Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
22 result(s) for "Lail, Kathleen"
Sort by:
A genome assembly and the somatic genetic and epigenetic mutation rate in a wild long-lived perennial Populus trichocarpa
Background Plants can transmit somatic mutations and epimutations to offspring, which in turn can affect fitness. Knowledge of the rate at which these variations arise is necessary to understand how plant development contributes to local adaption in an ecoevolutionary context, particularly in long-lived perennials. Results Here, we generate a new high-quality reference genome from the oldest branch of a wild Populus trichocarpa tree with two dominant stems which have been evolving independently for 330 years. By sampling multiple, age-estimated branches of this tree, we use a multi-omics approach to quantify age-related somatic changes at the genetic, epigenetic, and transcriptional level. We show that the per-year somatic mutation and epimutation rates are lower than in annuals and that transcriptional variation is mainly independent of age divergence and cytosine methylation. Furthermore, a detailed analysis of the somatic epimutation spectrum indicates that transgenerationally heritable epimutations originate mainly from DNA methylation maintenance errors during mitotic rather than during meiotic cell divisions. Conclusion Taken together, our study provides unprecedented insights into the origin of nucleotide and functional variation in a long-lived perennial plant.
Genomic characterization of three marine fungi, including Emericellopsis atlantica sp. nov. with signatures of a generalist lifestyle and marine biomass degradation
Marine fungi remain poorly covered in global genome sequencing campaigns; the 1000 fungal genomes (1KFG) project attempts to shed light on the diversity, ecology and potential industrial use of overlooked and poorly resolved fungal taxa. This study characterizes the genomes of three marine fungi: Emericellopsis sp. TS7, wood-associated Amylocarpus encephaloides and algae-associated Calycina marina. These species were genome sequenced to study their genomic features, biosynthetic potential and phylogenetic placement using multilocus data. Amylocarpus encephaloides and C. marina were placed in the Helotiaceae and Pezizellaceae (Helotiales), respectively, based on a 15-gene phylogenetic analysis. These two genomes had fewer biosynthetic gene clusters (BGCs) and carbohydrate active enzymes (CAZymes) than Emericellopsis sp. TS7 isolate. Emericellopsis sp. TS7 (Hypocreales, Ascomycota) was isolated from the sponge Stelletta normani. A six-gene phylogenetic analysis placed the isolate in the marine Emericellopsis clade and morphological examination confirmed that the isolate represents a new species, which is described here as E. atlantica. Analysis of its CAZyme repertoire and a culturing experiment on three marine and one terrestrial substrates indicated that E. atlantica is a psychrotrophic generalist fungus that is able to degrade several types of marine biomass. FungiSMASH analysis revealed the presence of 35 BGCs including, eight non-ribosomal peptide synthases (NRPSs), six NRPS-like, six polyketide synthases, nine terpenes and six hybrid, mixed or other clusters. Of these BGCs, only five were homologous with characterized BGCs. The presence of unknown BGCs sets and large CAZyme repertoire set stage for further investigations of E. atlantica. The Pezizellaceae genome and the genome of the monotypic Amylocarpus genus represent the first published genomes of filamentous fungi that are restricted in their occurrence to the marine habitat and form thus a valuable resource for the community that can be used in studying ecological adaptions of fungi using comparative genomics.
Deletion of either the regulatory gene ara1 or metabolic gene xki1 in Trichoderma reesei leads to increased CAZyme gene expression on crude plant biomass
Background Trichoderma reesei is one of the major producers of enzymes for the conversion of plant biomass to sustainable fuels and chemicals. Crude plant biomass can induce the production of CAZymes in T. reesei, but there is limited understanding of how the transcriptional response to crude plant biomass is regulated. In addition, it is unknown whether induction on untreated recalcitrant crude plant biomass (with a large diversity of inducers) can be sustained for longer. We investigated the transcriptomic response of T. reesei to the two industrial feedstocks, corn stover (CS) and soybean hulls (SBH), over time (4 h, 24 h and 48 h), and its regulatory basis using transcription factor deletion mutants (Δxyr1 and Δara1). We also investigated whether deletion of a xylulokinase gene (Δxki1) from the pentose catabolic pathway that converts potential inducers could lead to increased CAZyme gene expression. Results By analyzing the transcriptomic responses using clustering as well as differential and cumulative expression of plant biomass degrading CAZymes, we found that corn stover induced a broader range and higher expression of CAZymes in T. reesei, while SBH induced more pectinolytic and mannanolytic transcripts. XYR1 was the major TF regulating CS utilization, likely due to the significant amount of d-xylose in this substrate. In contrast, ARA1 had a stronger effect on SBH utilization, which correlates with a higher abundance of l-arabinose in SBH that activates ARA1. Blocking pentose catabolism by deletion of xki1 led to higher expression of CAZyme encoding genes on both substrates at later time points. Surprisingly, this was also observed for Δara1 at later time points. Many of these genes were XYR1 regulated, suggesting that inducers for this regulator accumulated over time on both substrates. Conclusion Our data demonstrates the complexity of the regulatory system related to plant biomass degradation in T. reesei and the effect the feedstock composition has on this. Furthermore, this dataset provides leads to improve the efficiency of a T. reesei enzyme cocktail, such as by the choice of substrate or by deleting xki1 to obtain higher production of plant biomass degrading CAZymes.
Shotgun metagenomic analysis of microbial communities from the Loxahatchee nature preserve in the Florida Everglades
Background Currently, much is unknown about the taxonomic diversity and the mechanisms of methane metabolism in the Florida Everglades ecosystem. The Loxahatchee National Wildlife Refuge is a section of the Florida Everglades that is almost entirely unstudied in regard to taxonomic profiling. This short report analyzes the metagenome of soil samples from this Refuge to investigate the predominant taxa, as well as the abundance of genes involved in environmentally significant metabolic pathways related to methane production (nitrogen fixation and dissimilatory sulfite reduction). Methods Shotgun metagenomic sequencing using the Illumina platform was performed on 17 soil samples from four different sites within the Loxahatchee National Wildlife Refuge, and underwent quality control, assembly, and annotation. The soil from each sample was tested for water content and concentrations of organic carbon and nitrogen. Results The three most common phyla of bacteria for every site were Actinobacteria, Acidobacteria, and Proteobacteria; however, there was variation in relative phylum composition. The most common phylum of Archaea was Euryarchaeota for all sites. Alpha and beta diversity analyses indicated significant congruity in taxonomic diversity in most samples from Sites 1, 3, and 4 and negligible congruity between Site 2 and the other sites. Shotgun metagenomic sequencing revealed the presence of biogeochemical biomarkers of particular interest (e.g., mrcA, nifH, and dsrB) within the samples. The normalized abundances of mcrA , nifH , and dsrB exhibited a positive correlation with nitrogen concentration and water content, and a negative correlation with organic carbon concentration. Conclusion This Everglades soil metagenomic study allowed examination of wetlands biological processes and showed expected correlations between measured organic constituents and prokaryotic gene frequency. Additionally, the taxonomic profile generated gives a basis for the diversity of prokaryotic microbial life throughout the Everglades.
Genome sequencing and analysis of the model grass Brachypodium distachyon
Three subfamilies of grasses, the Ehrhartoideae, Panicoideae and Pooideae, provide the bulk of human nutrition and are poised to become major sources of renewable energy. Here we describe the genome sequence of the wild grass Brachypodium distachyon (Brachypodium), which is, to our knowledge, the first member of the Pooideae subfamily to be sequenced. Comparison of the Brachypodium, rice and sorghum genomes shows a precise history of genome evolution across a broad diversity of the grasses, and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat. The high-quality genome sequence, coupled with ease of cultivation and transformation, small size and rapid life cycle, will help Brachypodium reach its potential as an important model system for developing new energy and food crops.
IMITATION SWITCH is required for normal chromatin structure and gene repression in PRC2 target domains
Polycomb Group (PcG) proteins are part of an epigenetic cell memory system that plays essential roles in multicellular development, stem cell biology, X chromosome inactivation, and cancer. In animals, plants, and many fungi, Polycomb Repressive Complex 2 (PRC2) catalyzes trimethylation of histone H3 lysine 27 (H3K27me3) to assemble transcriptionally repressed facultative heterochromatin. PRC2 is structurally and functionally conserved in the model fungus Neurospora crassa, and recent work in this organism has generated insights into PRC2 control and function. To identify components of the facultative heterochromatin pathway, we performed a targeted screen of Neurospora deletion strains lacking individual ATP-dependent chromatin remodeling enzymes. We found the Neurospora homolog of IMITATION SWITCH (ISW) is critical for normal transcriptional repression, nucleosome organization, and establishment of typical histone methylation patterns in facultative heterochromatin domains. We also found that stable interaction between PRC2 and chromatin depends on ISW. A functional ISW ATPase domain is required for gene repression and normal H3K27 methylation. ISW homologs interact with accessory proteins to form multiple complexes with distinct functions. Using proteomics and molecular approaches, we identified three distinct Neurospora ISW-containing complexes. A triple mutant lacking three ISW accessory factors and disrupting multiple ISW complexes led to widespread up-regulation of PRC2 target genes and altered H3K27 methylation patterns, similar to an ISW-deficient strain. Taken together, our data show that ISW is a key component of the facultative heterochromatin pathway in Neurospora, and that distinct ISW complexes perform an apparently overlapping role to regulate chromatin structure and gene repression at PRC2 target domains.
Convergent evolution and horizontal gene transfer in Arctic Ocean microalgae
Microbial communities in the world ocean are affected strongly by oceanic circulation, creating characteristic marine biomes. The high connectivity of most of the ocean makes it difficult to disentangle selective retention of colonizing genotypes (with traits suited to biome specific conditions) from evolutionary selection, which would act on founder genotypes over time. The Arctic Ocean is exceptional with limited exchange with other oceans and ice covered since the last ice age. To test whether Arctic microalgal lineages evolved apart from algae in the global ocean, we sequenced four lineages of microalgae isolated from Arctic waters and sea ice. Here we show convergent evolution and highlight geographically limited HGT as an ecological adaptive force in the form of PFAM complements and horizontal acquisition of key adaptive genes. Notably, ice-binding proteins were acquired and horizontally transferred among Arctic strains. A comparison with Tara Oceans metagenomes and metatranscriptomes confirmed mostly Arctic distributions of these IBPs. The phylogeny of Arctic-specific genes indicated that these events were independent of bacterial-sourced HGTs in Antarctic Southern Ocean microalgae.
Convergent evolution and horizontal gene transfer in Arctic Ocean microalgae
Microbial communities in the world ocean are affected strongly by oceanic circulation, creating characteristic marine biomes. The high connectivity of most of the ocean makes it difficult to disentangle selective retention of colonizing genotypes (with traits suited to biome specific conditions) from evolutionary selection, which would act on founder genotypes over time. The Arctic Ocean is exceptional with limited exchange with other oceans and ice covered since the last ice age. To test whether Arctic microalgal lineages evolved apart from algae in the global ocean, we sequenced four lineages of microalgae isolated from Arctic waters and sea ice. Here we show convergent evolution and highlight geographically limited HGT as an ecological adaptive force in the form of PFAM complements and horizontal acquisition of key adaptive genes. Notably, ice-binding proteins were acquired and horizontally transferred among Arctic strains. A comparison with Tara Oceans metagenomes and metatranscriptomes confirmed mostly Arctic distributions of these IBPs. The phylogeny of Arctic-specific genes indicated that these events were independent of bacterial-sourced HGTs in Antarctic Southern Ocean microalgae.
Shotgun metagenomic analysis of microbial communities from the Loxahatchee nature preserve in the Florida Everglades
Background: Currently, much is unknown about the taxonomic diversity and the mechanisms of methane metabolism in the Florida Everglades ecosystem. The Loxahatchee National Wildlife Refuge is a section of the Florida Everglades that is almost entirely unstudied in regard to taxonomic profiling. This short report analyzes the metagenome of soil samples from this Refuge to investigate the predominant taxa, as well as the abundance of genes involved in environmentally significant metabolic pathways related to methane production (nitrogen fixation and dissimilatory sulfite reduction). Methods: Shotgun metagenomic sequencing using the Illumina platform was performed on 17 soil samples from four different sites within the Loxahatchee National Wildlife Refuge, and underwent quality control, assembly, and annotation. The soil from each sample was tested for water content and concentrations of organic carbon and nitrogen. Results: The three most common phyla of bacteria for every site were Actinobacteria, Acidobacteria, and Proteobacteria; however, there was variation in relative phylum composition. The most common phylum of Archaea was Euryarchaeota for all sites. Alpha and beta diversity analyses indicated significant congruity in taxonomic diversity in most samples from Sites 1, 3, and 4 and negligible congruity between Site 2 and the other sites. Shotgun metagenomic sequencing revealed the presence of biogeochemical biomarkers of particular interest (e.g., mrcA, nifH, and dsrB) within the samples. The normalized abundances of mcrA, nifH, and dsrB exhibited a positive correlation with nitrogen concentration and water content, and a negative correlation with organic carbon concentration. Conclusion: This Everglades soil metagenomic study allowed examination of wetlands biological processes and showed expected correlations between measured organic constituents and prokaryotic gene frequency. Additionally, the taxonomic profile generated gives a basis for the diversity of prokaryotic microbial life throughout the Everglades.
Genome sequencing and analysis of the model grass Brachypodium distachyon
Kirjoittajalista kokonaisuudessaan: Principal investigators John P. Vogel, David F. Garvin, Todd C. Mockler, Jeremy Schmutz, Dan Rokhsar, Michael W. Bevan; DNA sequencing and assembly Kerrie Barry, Susan Lucas, Miranda Harmon-Smith, Kathleen Lail, Hope Tice, Jeremy Schmutz (Leader), Jane Grimwood, Neil McKenzie, Michael W. Bevan; Pseudomolecule assembly and BACend sequencing NaxinHuo, Yong Q.Gu,GerardR. Lazo, OlinD.Anderson, John P. Vogel (Leader), Frank M. You,Ming-Cheng Luo, Jan Dvorak, Jonathan Wright, Melanie Febrer, Michael W. Bevan, Dominika Idziak, Robert Hasterok, David F. Garvin; Transcriptome sequencing and analysis Erika Lindquist, Mei Wang, Samuel E. Fox, Henry D. Priest, Sergei A. Filichkin, Scott A. Givan, Douglas W. Bryant, JeffH.Chang, ToddC.Mockler (Leader), HaiyanWu, Wei Wu, An-Ping Hsia, Patrick S. Schnable, Anantharaman Kalyanaraman, Brad Barbazuk, Todd P.Michael, Samuel P.Hazen, JenniferN. Bragg, Debbie Laudencia-Chingcuanco, John P. Vogel, David F. Garvin, Yiqun Weng, Neil McKenzie, Michael W. Bevan; Gene analysis and annotation Georg Haberer, Manuel Spannagl, Klaus Mayer (Leader), Thomas Rattei, ThereseMitros, Dan Rokhsar, Sang-Jik Lee, Jocelyn K. C. Rose, Lukas A. Mueller, Thomas L. York; Repeats analysis Thomas Wicker (Leader), Jan P. Buchmann, Jaakko Tanskanen, Alan H. Schulman (Leader), Heidrun Gundlach, Jonathan Wright, Michael Bevan, Antonio Costa de Oliveira, Luciano da C. Maia, William Belknap, Yong Q. Gu, Ning Jiang, Jinsheng Lai, Liucun Zhu, JianxinMa, Cheng Sun, Ellen Pritham; Comparative genomics Jerome Salse (Leader), Florent Murat, Michael Abrouk, Georg Haberer, Manuel Spannagl, Klaus Mayer, Remy Bruggmann, Joachim Messing, Frank M. You, Ming-Cheng Luo, Jan Dvorak; Small RNA analysis Noah Fahlgren, Samuel E. Fox, Christopher M. Sullivan, Todd C. Mockler, James C. Carrington, Elisabeth J. Chapman, Greg D.May, Jixian Zhai, Matthias Ganssmann, Sai Guna Ranjan Gurazada, Marcelo German, Blake C. Meyers, Pamela J. Green (Leader); Manual annotation and gene family analysis Jennifer N. Bragg, Ludmila Tyler, Jiajie Wu, Yong Q. Gu, Gerard R. Lazo, Debbie Laudencia-Chingcuanco, James Thomson, John P. Vogel (Leader), Samuel P. Hazen, Shan Chen, Henrik V. Scheller, JesperHarholt, Peter Ulvskov, Samuel E. Fox, Sergei A. Filichkin, Noah Fahlgren, Jeffrey A. Kimbrel, Jeff H. Chang, Christopher M. Sullivan, Elisabeth J. Chapman, James C. Carrington, Todd C. Mockler, Laura E. Bartley, Peijian Cao, Ki-Hong Jung, Manoj K Sharma, Miguel Vega-Sanchez, Pamela Ronald, Christopher D.Dardick, StefanieDe Bodt,Wim Verelst, Dirk Inze, Maren Heese, Arp Schnittger, Xiaohan Yang, Udaya C. Kalluri, GeraldA. Tuskan, ZhihuaHua, Richard D. Vierstra, David F. Garvin, Yu Cui, Shuhong Ouyang, Qixin Sun, Zhiyong Liu, Alper Yilmaz, Erich Grotewold, Richard Sibout, Kian Hematy, Gregory Mouille, Herman Hofte, Todd Michael, JeŽrome Pelloux, Devin O Connor, James Schnable, Scott Rowe, Frank Harmon, Cynthia L. Cass, John C. Sedbrook, Mary E. Byrne, SeanWalsh, Janet Higgins, Michael Bevan, PinghuaLi, ThomasBrutnell, TurgayUnver,Hikmet Budak, Harry Belcram, Mathieu Charles, Boulos Chalhoub, Ivan Baxter