Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
99 result(s) for "Laird, Peter W."
Sort by:
DNA methylation loss in late-replicating domains is linked to mitotic cell division
DNA methylation loss occurs frequently in cancer genomes, primarily within lamina-associated, late-replicating regions termed partially methylated domains (PMDs). We profiled 39 diverse primary tumors and 8 matched adjacent tissues using whole-genome bisulfite sequencing (WGBS) and analyzed them alongside 343 additional human and 206 mouse WGBS datasets. We identified a local CpG sequence context associated with preferential hypomethylation in PMDs. Analysis of CpGs in this context (‘solo-WCGWs’) identified previously undetected PMD hypomethylation in almost all healthy tissue types. PMD hypomethylation increased with age, beginning during fetal development, and appeared to track the accumulation of cell divisions. In cancer, PMD hypomethylation depth correlated with somatic mutation density and cell cycle gene expression, consistent with its reflection of mitotic history and suggesting its application as a mitotic clock. We propose that late replication leads to lifelong progressive methylation loss, which acts as a biomarker for cellular aging and which may contribute to oncogenesis. Whole-genome DNA methylation profiling and analysis of normal tissues from both human and mouse reveal that hypomethylation within partially methylated, late-replicating domains depends on sequence context, starts early in development, accumulates with cell divisions and progresses with organismal aging.
The power and the promise of DNA methylation markers
The past few years have seen an explosion of interest in the epigenetics of cancer. This has been a consequence of both the exciting coalescence of the chromatin and DNA methylation fields, and the realization that DNA methylation changes are involved in human malignancies. The ubiquity of DNA methylation changes has opened the way to a host of innovative diagnostic and therapeutic strategies. Recent advances attest to the great promise of DNA methylation markers as powerful future tools in the clinic.
Cell division drives DNA methylation loss in late-replicating domains in primary human cells
DNA methylation undergoes dramatic age-related changes, first described more than four decades ago. Loss of DNA methylation within partially methylated domains (PMDs), late-replicating regions of the genome attached to the nuclear lamina, advances with age in normal tissues, and is further exacerbated in cancer. We present here experimental evidence that this DNA hypomethylation is directly driven by proliferation-associated DNA replication. Within PMDs, loss of DNA methylation at low-density CpGs in A:T-rich immediate context (PMD solo-WCGWs) tracks cumulative population doublings in primary cell culture. Cell cycle deceleration results in a proportional decrease in the rate of DNA hypomethylation. Blocking DNA replication via Mitomycin C treatment halts methylation loss. Loss of methylation continues unabated after TERT immortalization until finally reaching a severely hypomethylated equilibrium. Ambient oxygen culture conditions increases the rate of methylation loss compared to low-oxygen conditions, suggesting that some methylation loss may occur during unscheduled, oxidative damage repair-associated DNA synthesis. Finally, we present and validate a model to estimate the relative cumulative replicative histories of human cells, which we call “RepliTali” ( Repli cation T imes A ccumulated in Li fetime). DNA methylation loss has been observed in aging tissues and cancers for decades. Researchers from Van Andel Institute have now provided experimental evidence that this process is directly driven by cell division.
DNA Methylation as a Biomarker for Cardiovascular Disease Risk
Elevated serum homocysteine is associated with an increased risk of cardiovascular disease (CVD). This may reflect a reduced systemic remethylation capacity, which would be expected to cause decreased genomic DNA methylation in peripheral blood leukocytes (PBL). We examined the association between prevalence of CVD (myocardial infarction, stroke) and its predisposing conditions (hypertension, diabetes) and PBL global genomic DNA methylation as represented by ALU and Satellite 2 (AS) repetitive element DNA methylation in 286 participants of the Singapore Chinese Health Study, a population-based prospective investigation of 63,257 men and women aged 45-74 years recruited during 1993-1998. Men exhibited significantly higher global DNA methylation [geometric mean (95% confidence interval (CI)): 159 (143, 178)] than women [133 (121, 147)] (P = 0.01). Global DNA methylation was significantly elevated in men with a history of CVD or its predisposing conditions at baseline (P = 0.03) but not in women (P = 0.53). Fifty-two subjects (22 men, 30 women) who were negative for these CVD/predisposing conditions at baseline acquired one or more of these conditions by the time of their follow-up I interviews, which took place on average about 5.8 years post-enrollment. Global DNA methylation levels of the 22 incident cases in men were intermediate (AS, 177) relative to the 56 male subjects who remained free of CVD/predisposing conditions at follow-up (lowest AS, 132) and the 51 male subjects with a diagnosis of CVD or predisposing conditions reported at baseline (highest AS 184) (P for trend = 0.0008) No such association was observed in women (P = 0.91). Baseline body mass index was positively associated with AS in both men and women (P = 0.007). Our findings indicate that elevated, not decreased, PBL DNA methylation is positively associated with prevalence of CVD/predisposing conditions and obesity in Singapore Chinese.
Inferring regulatory element landscapes and transcription factor networks from cancer methylomes
Recent studies indicate that DNA methylation can be used to identify transcriptional enhancers, but no systematic approach has been developed for genome-wide identification and analysis of enhancers based on DNA methylation. We describe ELMER (Enhancer Linking by Methylation/Expression Relationships), an R-based tool that uses DNA methylation to identify enhancers and correlates enhancer state with expression of nearby genes to identify transcriptional targets. Transcription factor motif analysis of enhancers is coupled with expression analysis of transcription factors to infer upstream regulators. Using ELMER, we investigated more than 2,000 tumor samples from The Cancer Genome Atlas. We identified networks regulated by known cancer drivers such as GATA3 and FOXA1 (breast cancer), SOX17 and FOXA2 (endometrial cancer), and NFE2L2, SOX2, and TP63 (squamous cell lung cancer). We also identified novel networks with prognostic associations, including RUNX1 in kidney cancer. We propose ELMER as a powerful new paradigm for understanding the cis-regulatory interface between cancer-associated transcription factors and their functional target genes.
Absolute quantification of somatic DNA alterations in human cancer
Tumors vary in their ratio of normal to cancerous cells and in their genomic copy number. Carter et al . describe an analytic method for inferring the purity and ploidy of a tumor sample, enabling longitudinal studies of subclonal mutations and tumor evolution. We describe a computational method that infers tumor purity and malignant cell ploidy directly from analysis of somatic DNA alterations. The method, named ABSOLUTE, can detect subclonal heterogeneity and somatic homozygosity, and it can calculate statistical sensitivity for detection of specific aberrations. We used ABSOLUTE to analyze exome sequencing data from 214 ovarian carcinoma tumor-normal pairs. This analysis identified both pervasive subclonal somatic point-mutations and a small subset of predominantly clonal and homozygous mutations, which were overrepresented in the tumor suppressor genes TP53 and NF1 and in a candidate tumor suppressor gene CDK12 . We also used ABSOLUTE to infer absolute allelic copy-number profiles from 3,155 diverse cancer specimens, revealing that genome-doubling events are common in human cancer, likely occur in cells that are already aneuploid, and influence pathways of tumor progression (for example, with recessive inactivation of NF1 being less common after genome doubling). ABSOLUTE will facilitate the design of clinical sequencing studies and studies of cancer genome evolution and intra-tumor heterogeneity.
Pan-cancer patterns of somatic copy number alteration
Rameen Beroukhim and colleagues analyzed somatic structural alterations in 12 tumor types. Whole-genome doubling was found in over a third of all cancers, associated with TP53 mutation. Fifteen new significantly mutated candidate driver genes were found associated with recurrently amplified or deleted regions. Determining how somatic copy number alterations (SCNAs) promote cancer is an important goal. We characterized SCNA patterns in 4,934 cancers from The Cancer Genome Atlas Pan-Cancer data set. Whole-genome doubling, observed in 37% of cancers, was associated with higher rates of every other type of SCNA, TP53 mutations, CCNE1 amplifications and alterations of the PPP2R complex. SCNAs that were internal to chromosomes tended to be shorter than telomere-bounded SCNAs, suggesting different mechanisms underlying their generation. Significantly recurrent focal SCNAs were observed in 140 regions, including 102 without known oncogene or tumor suppressor gene targets and 50 with significantly mutated genes. Amplified regions without known oncogenes were enriched for genes involved in epigenetic regulation. When levels of genomic disruption were accounted for, 7% of region pairs were anticorrelated, and these regions tended to encompass genes whose proteins physically interact, suggesting related functions. These results provide insights into mechanisms of generation and functional consequences of cancer-related SCNAs.
Principles and challenges of genome-wide DNA methylation analysis
Key Points Methylation of cytosine residues at the carbon 5 position occurs naturally in many bacteria, archaea and eukaryotic species, in which it has various roles in protecting the genome from invading genomic parasites or in controlling the expression potential of regions of the genome. DNA methylation is established after DNA synthesis by dedicated enzymes with specific target sequence recognition sites. The uneven distribution of target sites and sample heterogeneity can result in complex DNA methylation patterns. The genomic distribution of DNA methylation encodes important biological information. Hence, techniques for comprehensively describing DNA methylation patterns have been developed. Many standard molecular biology techniques, such as cloning and PCR, erase DNA methylation information, and hybridization does not distinguish between methylated and unmethylated cytosines. There are three different initial treatments of DNA that can be used to reveal DNA methylation: endonuclease digestion, affinity enrichment and bisulphite conversion. The implementation of array hybridization techniques greatly facilitated genome-scale analysis of DNA methylation. Endonuclease-treated or affinity-enriched DNA methods are particularly well suited for array hybridization, whereas bisulphite conversion techniques are not. Next-generation sequencing allows for whole-genome single-base-pair resolution characterization of DNA methylation patterns, particularly as applied to bisulphite-converted DNA. No single technique excels in all aspects. Sample number and characteristics, as well as the desired accuracy, coverage and resolution, influence the choice of technique. DNA methylation is usually measured on a β-distributed absolute scale from 0 to 1, or 0 to 100%, rather than on an infinite scale of log ratios. The unique data distribution characteristics of DNA methylation will require the development of dedicated bioinformatics and computational tools. Single-molecule and nanopore sequencing approaches are likely to usher in the next revolution in high-throughput DNA methylation analysis. Mapping DNA methylation is vital for understanding the importance of this epigenetic mark in health and disease. Recent years have seen rapid progress in the development of techniques for genome-scale methylation profiling; this Review introduces and evaluates the available methods. Methylation of cytosine bases in DNA provides a layer of epigenetic control in many eukaryotes that has important implications for normal biology and disease. Therefore, profiling DNA methylation across the genome is vital to understanding the influence of epigenetics. There has been a revolution in DNA methylation analysis technology over the past decade: analyses that previously were restricted to specific loci can now be performed on a genome-scale and entire methylomes can be characterized at single-base-pair resolution. However, there is such a diversity of DNA methylation profiling techniques that it can be challenging to select one. This Review discusses the different approaches and their relative merits and introduces considerations for data analysis.
Environmental epigenetics: prospects for studying epigenetic mediation of exposure–response relationships
Changes in epigenetic marks such as DNA methylation and histone acetylation are associated with a broad range of disease traits, including cancer, asthma, metabolic disorders, and various reproductive conditions. It seems plausible that changes in epigenetic state may be induced by environmental exposures such as malnutrition, tobacco smoke, air pollutants, metals, organic chemicals, other sources of oxidative stress, and the microbiome, particularly if the exposure occurs during key periods of development. Thus, epigenetic changes could represent an important pathway by which environmental factors influence disease risks, both within individuals and across generations. We discuss some of the challenges in studying epigenetic mediation of pathogenesis and describe some unique opportunities for exploring these phenomena.
DNA Methylation in the Human Cerebral Cortex Is Dynamically Regulated throughout the Life Span and Involves Differentiated Neurons
The role of DNA cytosine methylation, an epigenetic regulator of chromatin structure and function, during normal and pathological brain development and aging remains unclear. Here, we examined by MethyLight PCR the DNA methylation status at 50 loci, encompassing primarily 5' CpG islands of genes related to CNS growth and development, in temporal neocortex of 125 subjects ranging in age from 17 weeks of gestation to 104 years old. Two psychiatric disease cohorts--defined by chronic neurodegeneration (Alzheimer's) or lack thereof (schizophrenia)--were included. A robust and progressive rise in DNA methylation levels across the lifespan was observed for 8/50 loci (GABRA2, GAD1, HOXA1, NEUROD1, NEUROD2, PGR, STK11, SYK) typically in conjunction with declining levels of the corresponding mRNAs. Another 16 loci were defined by a sharp rise in DNA methylation levels within the first few months or years after birth. Disease-associated changes were limited to 2/50 loci in the Alzheimer's cohort, which appeared to reflect an acceleration of the age-related change in normal brain. Additionally, methylation studies on sorted nuclei provided evidence for bidirectional methylation events in cortical neurons during the transition from childhood to advanced age, as reflected by significant increases at 3, and a decrease at 1 of 10 loci. Furthermore, the DNMT3a de novo DNA methyl-transferase was expressed across all ages, including a subset of neurons residing in layers III and V of the mature cortex. Therefore, DNA methylation is dynamically regulated in the human cerebral cortex throughout the lifespan, involves differentiated neurons, and affects a substantial portion of genes predominantly by an age-related increase.