Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
395
result(s) for
"Lamb, Brian T."
Sort by:
Intercomparison of Same-Day Remote Sensing Data for Measuring Winter Cover Crop Biophysical Traits
by
Prabhakara, Kusuma
,
Jennewein, Jyoti
,
McCarty, Greg W.
in
Agricultural research
,
Air pollution
,
Atmosphere
2024
Winter cover crops are planted during the fall to reduce nitrogen losses and soil erosion and improve soil health. Accurate estimations of winter cover crop performance and biophysical traits including biomass and fractional vegetative groundcover support accurate assessment of environmental benefits. We examined the comparability of measurements between ground-based and spaceborne sensors as well as between processing levels (e.g., surface vs. top-of-atmosphere reflectance) in estimating cover crop biophysical traits. This research examined the relationships between SPOT 5, Landsat 7, and WorldView-2 same-day paired satellite imagery and handheld multispectral proximal sensors on two days during the 2012–2013 winter cover crop season. We compared two processing levels from three satellites with spatially aggregated proximal data for red and green spectral bands as well as the normalized difference vegetation index (NDVI). We then compared NDVI estimated fractional green cover to in-situ photographs, and we derived cover crop biomass estimates from NDVI using existing calibration equations. We used slope and intercept contrasts to test whether estimates of biomass and fractional green cover differed statistically between sensors and processing levels. Compared to top-of-atmosphere imagery, surface reflectance imagery were more closely correlated with proximal sensors, with intercepts closer to zero, regression slopes nearer to the 1:1 line, and less variance between measured values. Additionally, surface reflectance NDVI derived from satellites showed strong agreement with passive handheld multispectral proximal sensor-sensor estimated fractional green cover and biomass (adj. R2 = 0.96 and 0.95; RMSE = 4.76% and 259 kg ha−1, respectively). Although active handheld multispectral proximal sensor-sensor derived fractional green cover and biomass estimates showed high accuracies (R2 = 0.96 and 0.96, respectively), they also demonstrated large intercept offsets (−25.5 and 4.51, respectively). Our results suggest that many passive multispectral remote sensing platforms may be used interchangeably to assess cover crop biophysical traits whereas SPOT 5 required an adjustment in NDVI intercept. Active sensors may require separate calibrations or intercept correction prior to combination with passive sensor data. Although surface reflectance products were highly correlated with proximal sensors, the standardized cloud mask failed to completely capture cloud shadows in Landsat 7, which dampened the signal of NIR and red bands in shadowed pixels.
Journal Article
Mapping Crop Residue and Tillage Intensity Using WorldView-3 Satellite Shortwave Infrared Residue Indices
by
Shermeyer, Jacob
,
McCarty, Gregory W.
,
Quemada, Miguel
in
Absorption
,
Agricultural conservation
,
Agricultural equipment
2018
Crop residues serve many important functions in agricultural conservation including preserving soil moisture, building soil organic carbon, and preventing erosion. Percent crop residue cover on a field surface reflects the outcome of tillage intensity and crop management practices. Previous studies using proximal hyperspectral remote sensing have demonstrated accurate measurement of percent residue cover using residue indices that characterize cellulose and lignin absorption features found between 2100 nm and 2300 nm in the shortwave infrared (SWIR) region of the electromagnetic spectrum. The 2014 launch of the WorldView-3 (WV3) satellite has now provided a space-borne platform for the collection of narrow band SWIR reflectance imagery capable of measuring these cellulose and lignin absorption features. In this study, WorldView-3 SWIR imagery (14 May 2015) was acquired over farmland on the Eastern Shore of Chesapeake Bay (Maryland, USA), was converted to surface reflectance, and eight different SWIR reflectance indices were calculated. On-farm photographic sampling was used to measure percent residue cover at a total of 174 locations in 10 agricultural fields, ranging from plow-till to continuous no-till management, and these in situ measurements were used to develop percent residue cover prediction models from the SWIR indices using both polynomial and linear least squares regressions. Analysis was limited to agricultural fields with minimal green vegetation (Normalized Difference Vegetation Index < 0.3) due to expected interference of vegetation with the SWIR indices. In the resulting residue prediction models, spectrally narrow residue indices including the Shortwave Infrared Normalized Difference Residue Index (SINDRI) and the Lignin Cellulose Absorption Index (LCA) were determined to be more accurate than spectrally broad Landsat-compatible indices such as the Normalized Difference Tillage Index (NDTI), as determined by respective R2 values of 0.94, 0.92, and 0.84 and respective residual mean squared errors (RMSE) of 7.15, 8.40, and 12.00. Additionally, SINDRI and LCA were more resistant to interference from low levels of green vegetation. The model with the highest correlation (2nd order polynomial SINDRI, R2 = 0.94) was used to convert the SWIR imagery into a map of crop residue cover for non-vegetated agricultural fields throughout the imagery extent, describing the distribution of tillage intensity within the farm landscape. WorldView-3 satellite imagery provides spectrally narrow SWIR reflectance measurements that show utility for a robust mapping of crop residue cover.
Journal Article
Evaluation of SWIR Crop Residue Bands for the Landsat Next Mission
by
Wu, Zhuoting
,
Lamb, Brian T.
,
Daughtry, Craig S. T.
in
Absorption
,
Accuracy
,
Agricultural land
2021
This research reports the findings of a Landsat Next expert review panel that evaluated the use of narrow shortwave infrared (SWIR) reflectance bands to measure ligno-cellulose absorption features centered near 2100 and 2300 nm, with the objective of measuring and mapping non-photosynthetic vegetation (NPV), crop residue cover, and the adoption of conservation tillage practices within agricultural landscapes. Results could also apply to detection of NPV in pasture, grazing lands, and non-agricultural settings. Currently, there are no satellite data sources that provide narrowband or hyperspectral SWIR imagery at sufficient volume to map NPV at a regional scale. The Landsat Next mission, currently under design and expected to launch in the late 2020’s, provides the opportunity for achieving increased SWIR sampling and spectral resolution with the adoption of new sensor technology. This study employed hyperspectral data collected from 916 agricultural field locations with varying fractional NPV, fractional green vegetation, and surface moisture contents. These spectra were processed to generate narrow bands with centers at 2040, 2100, 2210, 2260, and 2230 nm, at various bandwidths, that were subsequently used to derive 13 NPV spectral indices from each spectrum. For crop residues with minimal green vegetation cover, two-band indices derived from 2210 and 2260 nm bands were top performers for measuring NPV (R^(2) = 0.81, RMSE = 0.13) using bandwidths of 30 to 50 nm, and the addition of a third band at 2100 nm increased resistance to atmospheric correction residuals and improved mission continuity with Landsat 8 Operational Land Imager Band 7. For prediction of NPV over a full range of green vegetation cover, the Cellulose Absorption Index, derived from 2040, 2100, and 2210 nm bands, was top performer (R^(2) = 0.77, RMSE = 0.17), but required a narrow (≤20 nm) bandwidth at 2040 nm to avoid interference from atmospheric carbon dioxide absorption. In comparison, broadband NPV indices utilizing Landsat 8 bands centered at 1610 and 2200 nm performed poorly in measuring fractional NPV (R^(2) = 0.44), with significantly increased interference from green vegetation
Journal Article
Comparing NISAR (Using Sentinel-1), USDA/NASS CDL, and Ground Truth Crop/Non-Crop Areas in an Urban Agricultural Region
by
Cosh, Michael H.
,
Hively, W. Dean
,
Lamb, Brian T.
in
Accuracy
,
Agricultural industry
,
Agricultural land
2023
A general limitation in assessing the accuracy of land cover mapping is the availability of ground truth data. At sites where ground truth is not available, potentially inaccurate proxy datasets are used for sub-field-scale resolution investigations at large spatial scales, i.e., in the Contiguous United States. The USDA/NASS Cropland Data Layer (CDL) is a popular agricultural land cover dataset due to its high accuracy (>80%), resolution (30 m), and inclusions of many land cover and crop types. However, because the CDL is derived from satellite imagery and has resulting uncertainties, comparisons to available in situ data are necessary for verifying classification performance. This study compares the cropland mapping accuracies (crop/non-crop) of an optical approach (CDL) and the radar-based crop area (CA) approach used for the upcoming NASA-ISRO Synthetic Aperture Radar (NISAR) L- and S-band mission but using Sentinel-1 C-band data. CDL and CA performance are compared to ground truth data that includes 54 agricultural production and research fields located at USDA’s Beltsville Agricultural Research Center (BARC) in Maryland, USA. We also evaluate non-crop mapping accuracy using twenty-six built-up and thirteen forest sites at BARC. The results show that the CDL and CA have a good pixel-wise agreement with one another (87%). However, the CA is notably more accurate compared to ground truth data than the CDL. The 2017–2021 mean accuracies for the CDL and CA, respectively, are 77% and 96% for crop, 100% and 94% for built-up, and 100% and 100% for forest, yielding an overall accuracy of 86% for the CDL and 96% for CA. This difference mainly stems from the CDL under-detecting crop cover at BARC, especially in 2017 and 2018. We also note that annual accuracy levels varied less for the CA (91–98%) than for the CDL (79–93%). This study demonstrates that a computationally inexpensive radar-based cropland mapping approach can also give accurate results over complex landscapes with accuracies similar to or better than optical approaches.
Journal Article
Characterizing Tidal Marsh Inundation with Synthetic Aperture Radar, Radiometric Modeling, and In Situ Water Level Observations
by
Tzortziou, Maria A.
,
Tesser, Derek S.
,
Lamb, Brian T.
in
Accuracy
,
Artificial satellites in remote sensing
,
Atmospheric carbon dioxide
2025
Tidal marshes play a globally critical role in carbon and hydrologic cycles by sequestering carbon dioxide from the atmosphere and exporting dissolved organic carbon to connected estuaries. These ecosystems provide critical habitat to a variety of fauna and also reduce coastal flood impacts. Accurate characterization of tidal marsh inundation dynamics is crucial for understanding these processes and ecosystem services. In this study, we developed remote sensing-based inundation classifications over a range of tidal stages for marshes of the Mid-Atlantic and Gulf of Mexico regions of the United States. Inundation products were derived from C-band and L-band synthetic aperture radar (SAR) imagery using backscatter thresholding and temporal change detection approaches. Inundation products were validated with in situ water level observations and radiometric modeling. The Michigan Microwave Canopy Scattering (MIMICS) radiometric model was used to simulate radar backscatter response for tidal marshes across a range of vegetation parameterizations and simulated hydrologic states. Our findings demonstrate that inundation classifications based on L-band SAR—developed using backscatter thresholding applied to single-date imagery—were comparable in accuracy to the best performing C-band SAR inundation classifications that required change detection approaches applied to time-series imagery (90.0% vs. 88.8% accuracy, respectively). L-band SAR backscatter threshold inundation products were also compared to polarimetric decompositions from quad-polarimetric Phased Array L-band Synthetic Aperture Radar 2 (PALSAR-2) and L-band Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) imagery. Polarimetric decomposition analysis showed a relative shift from volume and single-bounce scattering to double-bounce scattering in response to increasing tidal stage and associated increases in classified inundated area. MIMICS modeling similarly showed a relative shift to double-bounce scattering and a decrease in total backscatter in response to inundation. These findings have relevance to the upcoming NASA-ISRO Synthetic Aperture Radar (NISAR) mission, as threshold-based classifications of wetland inundation dynamics will be employed to verify that NISAR datasets satisfy associated mission science requirements to map wetland inundation with classification accuracies better than 80% at 1 hectare spatial scales.
Journal Article
Integration of Satellite-Based Optical and Synthetic Aperture Radar Imagery to Estimate Winter Cover Crop Performance in Cereal Grasses
by
Goldsmith, Avi
,
Hively, W. Dean
,
Lamb, Brian T.
in
Agricultural practices
,
Biomass
,
Climate change
2022
The magnitude of ecosystem services provided by winter cover crops is linked to their performance (i.e., biomass and associated nitrogen content, forage quality, and fractional ground cover), although few studies quantify these characteristics across the landscape. Remote sensing can produce landscape-level assessments of cover crop performance. However, commonly employed optical vegetation indices (VI) saturate, limiting their ability to measure high-biomass cover crops. Contemporary VIs that employ red-edge bands have been shown to be more robust to saturation issues. Additionally, synthetic aperture radar (SAR) data have been effective at estimating crop biophysical characteristics, although this has not been demonstrated on winter cover crops. We assessed the integration of optical (Sentinel-2) and SAR (Sentinel-1) imagery to estimate winter cover crops biomass across 27 fields over three winter–spring seasons (2018–2021) in Maryland. We used log-linear models to predict cover crop biomass as a function of 27 VIs and eight SAR metrics. Our results suggest that the integration of the normalized difference red-edge vegetation index (NDVI_RE1; employing Sentinel-2 bands 5 and 8A), combined with SAR interferometric (InSAR) coherence, best estimated the biomass of cereal grass cover crops. However, these results were season- and species-specific (R2 = 0.74, 0.81, and 0.34; RMSE = 1227, 793, and 776 kg ha−1, for wheat (Triticum aestivum L.), triticale (Triticale hexaploide L.), and cereal rye (Secale cereale), respectively, in spring (March–May)). Compared to the optical-only model, InSAR coherence improved biomass estimations by 4% in wheat, 5% in triticale, and by 11% in cereal rye. Both optical-only and optical-SAR biomass prediction models exhibited saturation occurring at ~1900 kg ha−1; thus, more work is needed to enable accurate biomass estimations past the point of saturation. To address this continued concern, future work could consider the use of weather and climate variables, machine learning models, the integration of proximal sensing and satellite observations, and/or the integration of process-based crop-soil simulation models and remote sensing observations.
Journal Article
Mapping Crop Residue by Combining Landsat and WorldView-3 Satellite Imagery
by
Shermeyer, Jacob
,
Keppler, Jason
,
Quemada, Miguel
in
Agricultural land
,
Agricultural management
,
Agricultural practices
2019
A unique, multi-tiered approach was applied to map crop residue cover on the Eastern Shore of the Chesapeake Bay, United States. Field measurements of crop residue cover were used to calibrate residue mapping using shortwave infrared (SWIR) indices derived from WorldView-3 imagery for a 12-km × 12-km footprint. The resulting map was then used to calibrate and subsequently classify crop residue mapping using Landsat imagery at a larger spatial resolution and extent. This manuscript describes how the method was applied and presents results in the form of crop residue cover maps, validation statistics, and quantification of conservation tillage implementation in the agricultural landscape. Overall accuracy for maps derived from Landsat 7 and Landsat 8 were comparable at roughly 92% (+/− 10%). Tillage class-specific accuracy was also strong and ranged from 75% to 99%. The approach, which employed a 12-band image stack of six tillage spectral indices and six individual Landsat bands, was shown to be adaptable to variable soil moisture conditions—under dry conditions (Landsat 7, 14 May 2015) the majority of predictive power was attributed to SWIR indices, and under wet conditions (Landsat 8, 22 May 2015) single band reflectance values were more effective at explaining variability in residue cover. Summary statistics of resulting tillage class occurrence matched closely with conservation tillage implementation totals reported by Maryland and Delaware to the Chesapeake Bay Program. This hybrid method combining WorldView-3 and Landsat imagery sources shows promise for monitoring progress in the adoption of conservation tillage practices and for describing crop residue outcomes associated with a variety of agricultural management practices.
Journal Article
A Fused Radar–Optical Approach for Mapping Wetlands and Deepwaters of the Mid–Atlantic and Gulf Coast Regions of the United States
by
Tzortziou, Maria A.
,
Lamb, Brian T.
,
McDonald, Kyle C.
in
Accuracy
,
Aerial photography
,
Animal behavior
2021
Tidal wetlands are critically important ecosystems that provide ecosystem services including carbon sequestration, storm surge mitigation, water filtration, and wildlife habitat provision while supporting high levels of biodiversity. Despite their importance, monitoring these systems over large scales remains challenging due to difficulties in obtaining extensive up-to-date ground surveys and the need for high spatial and temporal resolution satellite imagery for effective space-borne monitoring. In this study, we developed methodologies to advance the monitoring of tidal marshes and adjacent deepwaters in the Mid-Atlantic and Gulf Coast United States. We combined Sentinel-1 SAR and Landsat 8 optical imagery to classify marshes and open water in both regions, with user’s and producer’s accuracies exceeding 89%. This methodology enables the assessment of marsh loss through conversion to open water at an annual resolution. We used time-series Sentinel-1 imagery to classify persistent and non-persistent marsh vegetation with greater than 93% accuracy. Non-persistent marsh vegetation serves as an indicator of salinity regimes in tidal wetlands. Additionally, we mapped two invasive species: wetlands invasive Phragmites australis (common reed) with greater than 80% accuracy and deepwater invasive Trapa natans (water chestnut) with greater than 96% accuracy. These results have important implications for improved monitoring and management of coastal wetlands ecosystems.
Journal Article
Evaluation of Approaches for Mapping Tidal Wetlands of the Chesapeake and Delaware Bays
by
Tzortziou, Maria A.
,
Lamb, Brian T.
,
McDonald, Kyle C.
in
Aerial photography
,
Automation
,
Bays
2019
The spatial extent and vegetation characteristics of tidal wetlands and their change are among the biggest unknowns and largest sources of uncertainty in modeling ecosystem processes and services at the land-ocean interface. Using a combination of moderate-high spatial resolution (≤30 meters) optical and synthetic aperture radar (SAR) satellite imagery, we evaluated several approaches for mapping and characterization of wetlands of the Chesapeake and Delaware Bays. Sentinel-1A, Phased Array type L-band Synthetic Aperture Radar (PALSAR), PALSAR-2, Sentinel-2A, and Landsat 8 imagery were used to map wetlands, with an emphasis on mapping tidal marshes, inundation extents, and functional vegetation classes (persistent vs. non-persistent). We performed initial characterizations at three target wetlands study sites with distinct geomorphologies, hydrologic characteristics, and vegetation communities. We used findings from these target wetlands study sites to inform the selection of timeseries satellite imagery for a regional scale random forest-based classification of wetlands in the Chesapeake and Delaware Bays. Acquisition of satellite imagery, raster manipulations, and timeseries analyses were performed using Google Earth Engine. Random forest classifications were performed using the R programming language. In our regional scale classification, estuarine emergent wetlands were mapped with a producer’s accuracy greater than 88% and a user’s accuracy greater than 83%. Within target wetland sites, functional classes of vegetation were mapped with over 90% user’s and producer’s accuracy for all classes, and greater than 95% accuracy overall. The use of multitemporal SAR and multitemporal optical imagery discussed here provides a straightforward yet powerful approach for accurately mapping tidal freshwater wetlands through identification of non-persistent vegetation, as well as for mapping estuarine emergent wetlands, with direct applications to the improved management of coastal wetlands.
Journal Article
Monitoring Tropical Forest Disturbance and Recovery: A Multi-Temporal L-Band SAR Methodology from Annual to Decadal Scales
by
Podest, Erika
,
Villa-Galaviz, Edith
,
Blüthgen, Nico
in
Analysis
,
Artificial satellites in remote sensing
,
Biodiversity
2025
Tropical forests harbor a significant portion of global biodiversity but are increasingly degraded by human activity. Assessing restoration efforts requires the systematic monitoring of tropical ecosystem status and recovery. Satellite-borne synthetic aperture radar (SAR) supports monitoring changes in vegetation structure and is of particular utility in tropical regions where clouds obscure optical satellite observations. To characterize tropical forest recovery in the Lowland Chocó Biodiversity Hotspot of Ecuador, we apply over a decade of dual-polarized (HH + HV) L-band SAR datasets from the Japanese Space Agency’s (JAXA) PALSAR and PALSAR-2 sensors. We assess the complementarity of the dual-polarized imagery with less frequently available fully-polarimetric imagery, particularly in the context of their respective temporal and informational trade-offs. We examine the radar image texture associated with the dual-pol radar vegetation index (DpRVI) to assess the associated determination of forest and nonforest areas in a topographically complex region, and we examine the equivalent performance of texture measures derived from the Freeman–Durden polarimetric radar decomposition classification scheme applied to the fully polarimetric data. The results demonstrate that employing a dual-polarimetric decomposition classification scheme and subsequently deriving the associated gray-level co-occurrence matrix mean from the DpRVI substantially improved the classification accuracy (from 88.2% to 97.2%). Through this workflow, we develop a new metric, the Radar Forest Regeneration Index (RFRI), and apply it to describe a chronosequence of a tropical forest recovering from naturally regenerating pasture and cacao plots. Our findings from the Lowland Chocó region are particularly relevant to the upcoming NASA-ISRO NISAR mission, which will enable the comprehensive characterization of vegetation structural parameters and significantly enhance the monitoring of biodiversity conservation efforts in tropical forest ecosystems.
Journal Article