Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
291
result(s) for
"Lambert, Claude"
Sort by:
Effects of isolated, confined and extreme environments on parameters of the immune system - a systematic review
by
Straube, Emily
,
Mack, Isabelle
,
Lambert, Claude
in
Allergies
,
antigen diversity
,
antigen-limited environments
2025
The immune system is a crucial part of the body's defense against infection and disease. However, individuals in antigen-limited environments face unique challenges that can weaken their immune systems. This systematic review aimed to investigate the impact of an exposure to an isolated, confined and extreme (ICE) environment with limited antigen diversity on human immune parameters.
A systematic literature search was conducted using PubMed, Web of Science and Cochrane Library to identify relevant studies on immune system parameters in ICE environments. The studies were grouped by ICE type (space missions, microgravity simulations like bed rest studies, space simulation units like MARS500, and Antarctic research stations) to allow for clearer comparison and analysis of immune outcomes.
Analysis of 140 studies revealed considerable heterogeneity in study designs and outcomes, reflecting the complexity of immune responses across ICE environments. Nevertheless, immune dysregulation was consistently observed across environments. Space missions and Antarctic stations, in particular, showed pronounced immune changes, likely due to low antigen diversity and extreme conditions, with higher rates of infections and allergic responses suggesting increased vulnerability. Space simulation units exhibited immune changes similar to those in actual space missions, while gravity simulation studies, which focus on fluid shifts and bone loss, showed fewer immune alterations. Across environments, most immunological measures returned to baseline after isolation, indicating resilience and the potential for recovery upon re-exposure to diverse antigens.
Reduced antigen diversity in ICE environments disrupts immune function, with effects often compounded by extreme conditions. Although immune resilience and recovery post-isolation are promising, the heterogeneity in current studies highlights the need for targeted research to identify specific immune vulnerabilities and to develop countermeasures. Such measures could reduce immune-related health risks for individuals in isolated settings, including astronauts, polar researchers, and vulnerable populations on Earth, such as the elderly or immunocompromised, thereby enhancing resilience in confined environments.
https://www.crd.york.ac.uk/prospero/, identifier CRD42023476132.
Journal Article
An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change
2016
An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.
Journal Article
Compared to Wildfire, Management Practices Reduced Old-Growth Forest Diversity and Functionality in Primary Boreal Landscapes of Eastern Canada
by
Grondin, Pierre
,
Martin, Maxence
,
Lambert, Marie-Claude
in
Biodiversity
,
Boreal forests
,
Climate change
2021
Large primary forest residuals can still be found in boreal landscapes. Their areas are however shrinking rapidly due to anthropogenic activities, in particular industrial-scale forestry. The impacts of logging activities on primary boreal forests may also strongly differ from those of wildfires, the dominant stand-replacing natural disturbance in these forests. Since industrial-scale forestry is driven by economic motives, there is a risk that stands of higher economic value will be primarily harvested, thus threatening habitats, and functions related to these forests. Hence, the objective of this study was to identify the main attributes differentiating burned and logged stands prior to disturbance in boreal forests. The study territory lies in the coniferous and closed-canopy boreal forest in Québec, Canada, where industrial-scale logging and wildfire are the two main stand-replacing disturbances. Based on Québec government inventories of primary forests, we identified 427 transects containing about 5.5 circular field plots/transect that were burned or logged shortly after being surveyed, between 1985 and 2016. Comparative analysis of the main structural and environmental attributes of these transects highlighted the strong divergence in the impact of fire and harvesting on primary boreal forests. Overall, logging activities mainly harvested forests with the highest economic value, while most burned stands were low to moderately productive or recently disturbed. These results raise concerns about the resistance and resilience of remnant primary forests within managed areas, particularly in a context of disturbance amplification due to climate change. Moreover, the majority of the stands studied were old-growth forests, characterized by a high ecological value but also highly threatened by anthropogenic disturbances. A loss in the diversity and functionality of primary forests, and particularly the old-growth forests, therefore adds to the current issues related to these ecosystems. Since 2013, the study area is under ecosystem-based management, which implies that there have been marked changes in forestry practices. Complementary research will be necessary to assess the capacity of ecosystem-based management to address the challenges identified in our study.
Journal Article
Control of atmospheric export of dust from North Africa by the North Atlantic Oscillation
by
Dayan, Uri
,
Lambert, Claude E.
,
Dulac, François
in
Atmospheric circulation
,
Climate
,
Continental interfaces, environment
1997
Scientists used daily satellite observations of airborne dusts to obtain an 11-year regional-scale analysis of dust transport out of Africa. They discovered that this large-scale climatic control on the dust export is effected through changes in precipitation and atmospheric circulation over the regions of dust mobilization and transport.
Journal Article
Proinflammatory role of monocytes in SARS-CoV-2 infection in chronic hemodialysis patients
by
Vladareanu, Ana-Maria
,
Ardelean, Luminita
,
Bumbea, Horia
in
Angina pectoris
,
Antigens
,
Atherosclerosis
2023
BackgroundFully mature monocytes that express CD14, but not CD16, undergo phagocytosis within tissues, whereas non-classical monocytes, CD14-low CD16+, represent <11% of peripheral monocytes and have primary pro-inflammatory functions. Inflammation plays a major role in Covid-19 disease and adds to the inflammation caused by chronic hemodialysis. The aim of our study was to monitor monocyte subsets in five patients with end-stage kidney disease (ESKD) over a 1-year period after a mild Covid-19 infection. Five ESKD patients with a mild Covid-19 infection were monitored using CD14, CD16, CD300e, HLA-DR, CD64, and CD45 panels using a BD FACS Canto flow cytometer.ResultsCD14-low CD16+ was dramatically (p=0,001) decreased in patients during Covid-19 infection, as previously described for patients without chronic renal failure. In addition, CD14-low CD16+ monocytes remained decreased for 10 months after recovery from Covid. Intermediate monocytes increased during Covid-19 infection and decreased 10 months after infection but this subtype of monocytes retained their inflammatory activity with a significant increase in HLA-DR expression after recovery from Covid infection.ConclusionOur study shows that ESKD patients had a pro-inflammatory profile induced by Covid 19, but this status was prolonged significantly over a 10-month period. Thus, advanced renal failure treated by hemodialysis did not dramatically change the inflammatory response against to SARS Covid 2. It seems that monocytes retain their inflammatory status for many months in ESKD patients after a Covid-19 infection.
Journal Article
Monitoring immune modulation by nutrition in the general population: identifying and substantiating effects on human health
2013
Optimal functioning of the immune system is crucial to human health, and nutrition is one of the major exogenous factors modulating different aspects of immune function. Currently, no single marker is available to predict the effect of a dietary intervention on different aspects of immune function. To provide further guidance on the assessment and interpretation of the modulation of immune functions due to nutrition in the general population, International Life Sciences Institute Europe commissioned a group of experts from academia, government and the food industry to prepare a guidance document. A draft of this paper was refined at a workshop involving additional experts. First, the expert group defined criteria to evaluate the usefulness of immune function markers. Over seventy-five markers were scored within the context of three distinct immune system functions: defence against pathogens; avoidance or mitigation of allergy; control of low-grade (metabolic) inflammation. The most useful markers were subsequently classified depending on whether they by themselves signify clinical relevance and/or involvement of immune function. Next, five theoretical scenarios were drafted describing potential changes in the values of markers compared with a relevant reference range. Finally, all elements were combined, providing a framework to aid the design and interpretation of studies assessing the effects of nutrition on immune function. This stepwise approach offers a clear rationale for selecting markers for future trials and provides a framework for the interpretation of outcomes. A similar stepwise approach may also be useful to rationalise the selection and interpretation of markers for other physiological processes critical to the maintenance of health and well-being.
Journal Article
Epigenetic and Genotoxic Mechanisms of PFAS-Induced Neurotoxicity: A Molecular and Transgenerational Perspective
by
Soulimani, Rachid
,
Kebieche, Narimane
,
Lambert, Claude
in
Apoptosis
,
Bioaccumulation
,
Biomarkers
2025
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that continue to raise concern owing to their ability to accumulate in living organisms. In recent years, a growing body of research has shown that PFAS can exert their toxicity through disruption of both DNA integrity and epigenetic regulation. This includes changes in DNA methylation patterns, histone modifications, chromatin remodeling, and interference with DNA repair mechanisms. These molecular-level alterations can impair transcriptional regulation and cellular homeostasis, contributing to genomic instability and long-term biological dysfunction. In neural systems, PFAS exposure appears particularly concerning. It affects key regulators of neurodevelopment, such as BDNF, synaptic plasticity genes, and inflammatory mediators. Importantly, epigenetic dysregulation extends to non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), which mediate post-transcriptional silencing and chromatin remodeling. Although direct evidence of transgenerational neurotoxicity is still emerging, animal studies provide compelling hints. Persistent changes in germline epigenetic profiles and transcriptomic alterations suggest that developmental reprogramming might be heritable by future generations. Additionally, PFAS modulate nuclear receptor signaling (e.g., PPARγ), further linking environmental cues to chromatin-level gene regulation. Altogether, these findings underscore a mechanistic framework in which PFAS disrupt neural development and cognitive function via conserved epigenetic and genotoxic mechanisms. Understanding how these upstream alterations affect long-term neurodevelopmental and neurobehavioral outcomes is critical for improving risk assessment and guiding future interventions. This review underscores the need for integrative research on PFAS-induced chromatin disruptions, particularly across developmental stages, and their potential to impact future generations.
Journal Article
Flow Cytometric Analyses of Lymphocyte Markers in Immune Oncology: A Comprehensive Guidance for Validation Practice According to Laws and Standards
2020
Many anticancer therapies such as antibody-based therapies, cellular therapeutics (e.g., genetically modified cells, regulators of cytokine signaling, and signal transduction), and other biologically tailored interventions strongly influence the immune system and require tools for research, diagnosis, and monitoring. In flow cytometry,
diagnostic (IVD) test kits that have been compiled and validated by the manufacturer are not available for all requirements. Laboratories are therefore usually dependent on modifying commercially available assays or, most often, developing them to meet clinical needs. However, both variants must then undergo full validation to fulfill the IVD regulatory requirements. Flow cytometric immunophenotyping is a multiparametric analysis of parameters, some of which have to be repeatedly adjusted; that must be considered when developing specific antibody panels. Careful adjustments of general rules are required to meet legal and regulatory requirements in the analysis of these assays. Here, we describe the relevant regulatory framework for flow cytometry-based assays and describe methods for the introduction of new antibody combinations into routine work including development of performance specifications, validation, and statistical methodology for design and analysis of the experiments. The aim is to increase reliability, efficiency, and auditability after the introduction of in-house-developed flow cytometry assays.
Journal Article
Predator dietary response to prey density variation and consequences for cestode transmission
by
Lambert, Jean-Claude
,
Deplazes, Peter
,
Giraudoux, Patrick
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
Animals
2010
The functional response of predators to prey density variations has previously been investigated in order to understand predation patterns. However, the consequences of functional response on parasite transmission remain largely unexplored. The rodents Microtus arvalis and Arvicola terrestris are the main prey of the red fox Vulpes vulpes in eastern France. These species are intermediate and definitive hosts of the cestode Echinococcus multilocularis. We explored the dietary and contamination responses of the red fox to variations in prey density. The dietary response differed between the two prey species: no response for M. arvalis and a type III-like (sigmoidal) response for A. terrestris that shows possible interference with M. arvalis. The fox contamination response followed a type II shape (asymptotic) for both species. We conclude that fox predation is species specific and E. multilocularis transmission is likely to be regulated by a complex combination of predation and immunologic factors. These results should provide a better understanding of the biological and ecological mechanisms involved in the transmission dynamics of trophically transmitted parasites when multiple hosts are involved. The relevance of the models of parasite transmission should be enhanced if non-linear patterns are taken into account.
Journal Article
Editorial: The relationship between COVID-19 severity and cancer immunity and immunotherapy
by
Nunès, Jacques A.
,
Wise-Draper, Trisha M.
,
Lambert, Claude
in
Antibodies
,
Antigens, Neoplasm
,
cancer
2023
[...]patients undergoing anti-cancer treatment, especially immunotherapy, that also have baseline underlying immunosuppression, have particularly poor COVID-19 outcomes (3). [...]vaccination against COVID-19 has not resulted in long lasting immunity in cancer patients necessitating boosters for best response (4). [...]dedicated research to determine the mechanism in which COVID-19 affects cancer immunity and immunotherapy is needed. [...]stimulation of the T cell response, and subsequent boost of immunogenicity occurs after influenza vaccination (8).
Journal Article