Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
222
result(s) for
"Lambin, Philippe"
Sort by:
Transparency of deep neural networks for medical image analysis: A review of interpretability methods
by
Woodruff, Henry C.
,
Chatterjee, Avishek
,
Lambin, Philippe
in
Artificial intelligence
,
Artificial neural networks
,
Biomarkers
2022
Artificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for diagnosis and treatment decisions. Deep neural networks have shown the same or better performance than clinicians in many tasks owing to the rapid increase in the available data and computational power. In order to conform to the principles of trustworthy AI, it is essential that the AI system be transparent, robust, fair, and ensure accountability. Current deep neural solutions are referred to as black-boxes due to a lack of understanding of the specifics concerning the decision-making process. Therefore, there is a need to ensure the interpretability of deep neural networks before they can be incorporated into the routine clinical workflow. In this narrative review, we utilized systematic keyword searches and domain expertise to identify nine different types of interpretability methods that have been used for understanding deep learning models for medical image analysis applications based on the type of generated explanations and technical similarities. Furthermore, we report the progress made towards evaluating the explanations produced by various interpretability methods. Finally, we discuss limitations, provide guidelines for using interpretability methods and future directions concerning the interpretability of deep neural networks for medical imaging analysis.
•Interpretability of deep neural networks is important for fostering clinical trust and for troubleshooting systems.•Interpretability methods for medical image analysis tasks can be classified into nine different types.•Evaluation of interpretability methods in a clinical setting is important.•Quantitative and qualitative evaluation of post-hoc explanations is important to determine their sanity.•Interpretability methods can help in discovering new imaging biomarkers.
Journal Article
Feature of Review Papers in Nanotechnology and Applied Nanosciences
2024
Nanoparticles have been in use for centuries [...]
Journal Article
Elastic Properties and Stability of Physisorbed Graphene
2014
Graphene is an ultimate membrane that mixes both flexibility and mechanical strength, together with many other remarkable properties. A good knowledge of the elastic properties of graphene is prerequisite to any practical application of it in nanoscopic devices. Although this two-dimensional material is only one atom thick, continuous-medium elasticity can be applied as long as the deformations vary slowly on the atomic scale and provided suitable parameters are used. The present paper aims to be a critical review on this topic that does not assume a specific pre-knowledge of graphene physics. The basis for the paper is the classical Kirchhoff-Love plate theory. It demands a few parameters that can be addressed from many points of view and fitted to independent experimental data. The parameters can also be estimated by electronic structure calculations. Although coming from diverse backgrounds, most of the available data provide a rather coherent picture that gives a good degree of confidence in the classical description of graphene elasticity. The theory can than be used to estimate, e.g., the buckling limit of graphene bound to a substrate. It can also predict the size above which a scrolled graphene sheet will never spontaneously unroll in free space.
Journal Article
Machine Learning methods for Quantitative Radiomic Biomarkers
by
Aerts, Hugo J. W. L.
,
Bussink, Johan
,
Grossmann, Patrick
in
631/67/1612/1350
,
631/67/2321
,
692/53/2423
2015
Radiomics extracts and mines large number of medical imaging features quantifying tumor phenotypic characteristics. Highly accurate and reliable machine-learning approaches can drive the success of radiomic applications in clinical care. In this radiomic study, fourteen feature selection methods and twelve classification methods were examined in terms of their performance and stability for predicting overall survival. A total of 440 radiomic features were extracted from pre-treatment computed tomography (CT) images of 464 lung cancer patients. To ensure the unbiased evaluation of different machine-learning methods, publicly available implementations along with reported parameter configurations were used. Furthermore, we used two independent radiomic cohorts for training (n = 310 patients) and validation (n = 154 patients). We identified that Wilcoxon test based feature selection method WLCX (stability = 0.84 ± 0.05, AUC = 0.65 ± 0.02) and a classification method random forest RF (RSD = 3.52%, AUC = 0.66 ± 0.03) had highest prognostic performance with high stability against data perturbation. Our variability analysis indicated that the choice of classification method is the most dominant source of performance variation (34.21% of total variance). Identification of optimal machine-learning methods for radiomic applications is a crucial step towards stable and clinically relevant radiomic biomarkers, providing a non-invasive way of quantifying and monitoring tumor-phenotypic characteristics in clinical practice.
Journal Article
Featuring the State of the Art of Nanosciences in Belgium
2020
First-principle computational techniques based on density functional theory have been used by Houssa et al. In close connection with the experiment, they calculated the optical response of the dimer assembly to sequences of femtosecond laser pulses similar to what is used in pump-probe transient absorption spectroscopy. 4. According to microscopic analysis, the nanotube tips were opened by the incident ions and functionalized.
Journal Article
Radiomics: the bridge between medical imaging and personalized medicine
by
Deist, Timo M.
,
Mottaghy, Felix M.
,
Sanduleanu, Sebastian
in
631/208/212/2166
,
692/699/67/2321
,
692/699/67/69
2017
Key Points
Radiomics is becoming increasingly more important in medical imaging
The explosion of medical imaging data creates an environment ideal for machine-learning and data-based science
Radiomics-based decision-support systems for precision diagnosis and treatment can be a powerful tool in modern medicine
Large-scale data sharing is necessary for the validation and full potential that radiomics represents
Standardized data collection, evaluation criteria, and reporting guidelines are required for radiomics to mature as a discipline
Radiomics is the high-throughput mining of quantitative image features from standard-of-care medical imaging to enable data to be extracted and applied within clinical-decision support systems. The process of radiomics is described and its pitfalls, challenges, opportunities, and capacity to improve clinical decision making. The radiomics field requires standardized evaluation of scientific findings and their clinical relevance. This review provides guidance for investigations to meet this urgent need in the field of radiomics.
Radiomics, the high-throughput mining of quantitative image features from standard-of-care medical imaging that enables data to be extracted and applied within clinical-decision support systems to improve diagnostic, prognostic, and predictive accuracy, is gaining importance in cancer research. Radiomic analysis exploits sophisticated image analysis tools and the rapid development and validation of medical imaging data that uses image-based signatures for precision diagnosis and treatment, providing a powerful tool in modern medicine. Herein, we describe the process of radiomics, its pitfalls, challenges, opportunities, and its capacity to improve clinical decision making, emphasizing the utility for patients with cancer. Currently, the field of radiomics lacks standardized evaluation of both the scientific integrity and the clinical relevance of the numerous published radiomics investigations resulting from the rapid growth of this area. Rigorous evaluation criteria and reporting guidelines need to be established in order for radiomics to mature as a discipline. Herein, we provide guidance for investigations to meet this urgent need in the field of radiomics.
Journal Article
Automated detection and segmentation of non-small cell lung cancer computed tomography images
by
Primakov, Sergey P.
,
Kayan, Esma
,
Monshouwer, René
in
639/705/1042
,
639/705/794
,
692/4028/67/1612/1350
2022
Detection and segmentation of abnormalities on medical images is highly important for patient management including diagnosis, radiotherapy, response evaluation, as well as for quantitative image research. We present a fully automated pipeline for the detection and volumetric segmentation of non-small cell lung cancer (NSCLC) developed and validated on 1328 thoracic CT scans from 8 institutions. Along with quantitative performance detailed by image slice thickness, tumor size, image interpretation difficulty, and tumor location, we report an in-silico prospective clinical trial, where we show that the proposed method is faster and more reproducible compared to the experts. Moreover, we demonstrate that on average, radiologists & radiation oncologists preferred automatic segmentations in 56% of the cases. Additionally, we evaluate the prognostic power of the automatic contours by applying RECIST criteria and measuring the tumor volumes. Segmentations by our method stratified patients into low and high survival groups with higher significance compared to those methods based on manual contours.
Correct interpretation of computer tomography (CT) scans is important for the correct assessment of a patient’s disease but can be subjective and timely. Here, the authors develop a system that can automatically segment the non-small cell lung cancer on CT images of patients and show in an in silico trial that the method was faster and more reproducible than clinicians.
Journal Article
Radiomic feature clusters and Prognostic Signatures specific for Lung and Head & Neck cancer
by
Aerts, Hugo J.W.L.
,
Haibe-Kains, Benjamin
,
Rios Velazquez, Emmanuel
in
631/67/1536
,
631/67/1612/1350
,
631/67/2321
2015
Radiomics provides a comprehensive quantification of tumor phenotypes by extracting and mining large number of quantitative image features. To reduce the redundancy and compare the prognostic characteristics of radiomic features across cancer types, we investigated cancer-specific radiomic feature clusters in four independent Lung and Head & Neck (H&N) cancer cohorts (in total 878 patients). Radiomic features were extracted from the pre-treatment computed tomography (CT) images. Consensus clustering resulted in eleven and thirteen stable radiomic feature clusters for Lung and H&N cancer, respectively. These clusters were validated in independent external validation cohorts using rand statistic (Lung RS = 0.92, p < 0.001, H&N RS = 0.92, p < 0.001). Our analysis indicated both common as well as cancer-specific clustering and clinical associations of radiomic features. Strongest associations with clinical parameters: Prognosis Lung CI = 0.60 ± 0.01, Prognosis H&N CI = 0.68 ± 0.01; Lung histology AUC = 0.56 ± 0.03, Lung stage AUC = 0.61 ± 0.01, H&N HPV AUC = 0.58 ± 0.03, H&N stage AUC = 0.77 ± 0.02. Full utilization of these cancer-specific characteristics of image features may further improve radiomic biomarkers, providing a non-invasive way of quantifying and monitoring tumor phenotypic characteristics in clinical practice.
Journal Article
Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation
by
Aerts, Hugo J. W. L.
,
Mitra, Sushmita
,
Haibe-Kains, Benjamin
in
Carcinoma, Non-Small-Cell Lung - diagnosis
,
Computed tomography
,
Contouring
2014
Due to advances in the acquisition and analysis of medical imaging, it is currently possible to quantify the tumor phenotype. The emerging field of Radiomics addresses this issue by converting medical images into minable data by extracting a large number of quantitative imaging features. One of the main challenges of Radiomics is tumor segmentation. Where manual delineation is time consuming and prone to inter-observer variability, it has been shown that semi-automated approaches are fast and reduce inter-observer variability. In this study, a semiautomatic region growing volumetric segmentation algorithm, implemented in the free and publicly available 3D-Slicer platform, was investigated in terms of its robustness for quantitative imaging feature extraction. Fifty-six 3D-radiomic features, quantifying phenotypic differences based on tumor intensity, shape and texture, were extracted from the computed tomography images of twenty lung cancer patients. These radiomic features were derived from the 3D-tumor volumes defined by three independent observers twice using 3D-Slicer, and compared to manual slice-by-slice delineations of five independent physicians in terms of intra-class correlation coefficient (ICC) and feature range. Radiomic features extracted from 3D-Slicer segmentations had significantly higher reproducibility (ICC = 0.85±0.15, p = 0.0009) compared to the features extracted from the manual segmentations (ICC = 0.77±0.17). Furthermore, we found that features extracted from 3D-Slicer segmentations were more robust, as the range was significantly smaller across observers (p = 3.819e-07), and overlapping with the feature ranges extracted from manual contouring (boundary lower: p = 0.007, higher: p = 5.863e-06). Our results show that 3D-Slicer segmented tumor volumes provide a better alternative to the manual delineation for feature quantification, as they yield more reproducible imaging descriptors. Therefore, 3D-Slicer can be employed for quantitative image feature extraction and image data mining research in large patient cohorts.
Journal Article
Defining the biological basis of radiomic phenotypes in lung cancer
by
Haibe-Kains, Benjamin
,
Aerts, Hugo JWL
,
Rios Velazquez, Emmanuel
in
Adenocarcinoma - diagnostic imaging
,
Adenocarcinoma - pathology
,
Adenocarcinoma - radiotherapy
2017
Medical imaging can visualize characteristics of human cancer noninvasively. Radiomics is an emerging field that translates these medical images into quantitative data to enable phenotypic profiling of tumors. While radiomics has been associated with several clinical endpoints, the complex relationships of radiomics, clinical factors, and tumor biology are largely unknown. To this end, we analyzed two independent cohorts of respectively 262 North American and 89 European patients with lung cancer, and consistently identified previously undescribed associations between radiomic imaging features, molecular pathways, and clinical factors. In particular, we found a relationship between imaging features, immune response, inflammation, and survival, which was further validated by immunohistochemical staining. Moreover, a number of imaging features showed predictive value for specific pathways; for example, intra-tumor heterogeneity features predicted activity of RNA polymerase transcription (AUC = 0.62, p=0.03) and intensity dispersion was predictive of the autodegration pathway of a ubiquitin ligase (AUC = 0.69, p<10-4). Finally, we observed that prognostic biomarkers performed highest when combining radiomic, genetic, and clinical information (CI = 0.73, p<10-9) indicating complementary value of these data. In conclusion, we demonstrate that radiomic approaches permit noninvasive assessment of both molecular and clinical characteristics of tumors, and therefore have the potential to advance clinical decision-making by systematically analyzing standard-of-care medical images.
Medical imaging covers a wide range of techniques that are used to look inside the body, including X-rays, MRI scans and ultrasound. A process called radiomics uses computer algorithms to process the data collected by these techniques to identify and precisely measure a large number of features that would not otherwise be quantifiable by human experts. By doing so, radiomics can automatically measure the radiographic characteristics of a tumor. For example, radiomics can establish the size, shape and texture of a tumor to help to diagnose cancer and guide its treatment.
Research has suggested that radiomics can predict certain clinical characteristics of cancer, such as how far through the body the cancer has spread, how likely it is to respond to treatment, and how likely a patient is to survive. However, these radiomic characteristics have not yet been precisely linked to the biological processes that drive how cancer develops and spreads.
Cancers develop as a result of genetic changes that activate “molecular pathways” in the cells and trigger processes such as cell division and inflammation. To work out exactly which changes are behind a particular tumor, a sample of the tumor from biopsy or surgery is analyzed using genomics techniques. Linking radiomics features to the molecular processes active in a tumor can generate further information that can complement the molecular data. Images are routinely collected on all cancer patients yet molecular data is not. Hence, in some cases, the images can be used to infer the molecular underpinnings of cancer in individual patients.
Grossmann et al. have now analyzed radiomic, genomic and clinical data collected from approximately 350 patients with lung cancer. The analysis revealed links between biological processes normally detected by genomics – in particular, inflammatory responses – and radiomics features. Furthermore, these features could also be associated with clinical characteristics, such as tumor type and patient survival rates. These results were further validated by using a technique called immunohistochemical staining on tumor tissue obtained by surgery.
Further investigation revealed that certain radiomics features can predict the state of molecular pathways that are key to cancer development (such as the inflammatory response). Furthermore, Grossmann et al. found that combining data from radiomics, genomics and clinical parameters predicts how the cancer will progress better than any of these parameters can predict on their own. These results demonstrate the complementary value of radiomic data to genomic and clinical data.
There are many different algorithms that can be used to process images for radiomics. Before radiomics can be used clinically to assess the biological processes underlying the tumors of patients, a specific algorithm needs to be decided upon and then tested in prospective clinical trials.
Journal Article