Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
120
result(s) for
"Lambin, Xavier"
Sort by:
The enemy of my enemy is my friend: native pine marten recovery reverses the decline of the red squirrel by suppressing grey squirrel populations
by
O'Reilly, Catherine
,
Lambin, Xavier
,
Sheehy, Emma
in
Animals
,
Apparent Competition
,
Capture-recapture studies
2018
Shared enemies may instigate or modify competitive interactions between species. The dis-equilibrium caused by non-native species introductions has revealed that the outcome of such indirect interactions can often be dramatic. However, studies of enemy-mediated competition mostly consider the impact of a single enemy, despite species being embedded in complex networks of interactions. Here, we demonstrate that native red and invasive grey squirrels in Britain, two terrestrial species linked by resource and disease-mediated apparent competition, are also now linked by a second enemy-mediated relationship involving a shared native predator recovering from historical persecution, the European pine marten. Through combining spatial capture–recapture techniques to estimate pine marten density, and squirrel site-occupancy data, we find that the impact of exposure to predation is highly asymmetrical, with non-native grey squirrel occupancy strongly negatively affected by exposure to pine martens. By contrast, exposure to pine marten predation has an indirect positive effect on red squirrel populations. Pine marten predation thus reverses the well-documented outcome of resource and apparent competition between red and grey squirrels.
Journal Article
On the Viability of Energy Communities
by
Ehrenmann, Andreas
,
Abada, Ibrahim
,
Lambin, Xavier
in
Agglomeration
,
Analysis
,
Electric power production
2020
Following the development of decentralized production technologies, energy communities have become a topic of increased interest. While the potential benefits have been described, we use the framework of cooperative game theory to test the ability of such communities to adequately share the gains. Indeed, despite the potential value created by such coalitions, there is no guarantee that they will be viable: a subset of participants may find it profitable to exit the community and create another one of their own. We take the case of a neighborhood, having access to a limited resource—e.g. a shared roof or piece of land—which they can exploit if they invest in some renewable production capacity. By joining the community, participants also enjoy aggregation gains in the form of reduced network fees. We find conditions depending on the structure of renewable installation costs, on the magnitude of the aggregation effect and coordination costs and, most importantly, on the chosen sharing rule, under which the whole energy community is stable. In particular, we show that standard sharing rules often fail to enable communities to form and we suggest the adoption of slightly more sophisticated rules. Efficiency could require the intervention of a local planner or a change in network tariff structures.
Journal Article
The value of considering demographic contributions to connectivity: a review
by
Drake, Joseph
,
Sutherland, Chris
,
Lambin, Xavier
in
Anthropogenic factors
,
climate
,
colonization–extinction
2022
Connectivity is a central concept in ecology, wildlife management, and conservation science. Understanding the role of connectivity in determining species persistence is increasingly important in the face of escalating anthropogenic impacts on climate and habitat. These connectivity augmenting processes can severely impact species distributions and community and ecosystem functioning. One general definition of connectivity is that it is an emergent process arising from a set of spatial interdependencies between individuals or populations, and increasingly realistic representations of connectivity are being sought. Generally, connectivity consists of a structural component, relating to the distribution of suitable and unsuitable habitat, and a functional component, relating to movement behavior, yet the interaction of both components often better describes ecological processes. Additionally, although implied by ‘movement', demographic measures such as the occurrence or abundance of organisms are regularly overlooked when quantifying connectivity. Integrating such demographic contributions based on the knowledge of species distribution patterns is critical to understanding the dynamics of spatially structured populations. Demographically‐informed connectivity draws from fundamental concepts in metapopulation ecology while maintaining important conceptual developments from landscape ecology, and the methodological development of spatially‐explicit hierarchical statistical models that have the potential to overcome modeling and data challenges. Together, this offers a promising framework for developing ecologically realistic connectivity metrics. This review synthesizes existing approaches for quantifying connectivity and advocates for demographically‐informed connectivity as a general framework for addressing current problems across ecological fields reliant on connectivity‐driven processes such as population ecology, conservation biology and landscape ecology. Using supporting simulations to highlight the consequences of commonly made assumptions that overlook important demographic contributions, we show that even small amounts of demographic information can greatly improve model performance. Ultimately, we argue demographic measures are central to extending the concept of connectivity and resolves long‐standing challenges associated with accurately quantifying the influence of connectivity on fundamental ecological processes.
Journal Article
Species Interactions in a Parasite Community Drive Infection Risk in a Wildlife Population
by
Burthe, Sarah
,
Beldomenico, Pablo
,
Begon, Mike
in
Anaplasma phagocytophilum - physiology
,
Animal and plant ecology
,
Animal diseases
2010
Most hosts, including humans, are simultaneously or sequentially infected with several parasites. A key question is whether patterns of coinfection arise because infection by one parasite species affects susceptibility to others or because of inherent differences between hosts. We used time-series data from individual hosts in natural populations to analyze patterns of infection risk for a microparasite community, detecting large positive and negative effects of other infections. Patterns remain once variations in host susceptibility and exposure are accounted for. Indeed, effects are typically of greater magnitude, and explain more variation in infection risk, than the effects associated with host and environmental factors more commonly considered in disease studies. We highlight the danger of mistaken inference when considering parasite species in isolation rather than parasite communities.
Journal Article
A proposed unified framework to describe the management of biological invasions
by
Pergl, Jan
,
Musseau Camille
,
Stefansson, Robert A
in
Containment
,
Interception
,
Introduced species
2020
Managing the impacts of invasive alien species (IAS) is a great societal challenge. A wide variety of terms have been used to describe the management of invasive alien species and the sequence in which they might be applied. This variety and lack of consistency creates uncertainty in the presentation and description of management in policy, science and practice. Here we expand on the existing description of the invasion process to develop an IAS management framework. We define the different forms of active management using a novel approach based on changes in species status, avoiding the need for stand-alone descriptions of management types, and provide a complete set of potential management activities. We propose a standardised set of management terminology as an emergent feature of this framework. We identified eight key forms of management: (1) pathway management, (2) interception, (3) limits to keeping, (4) secure keeping, (5) eradication, (6) complete reproductive removal, (7) containment and (8) suppression. We recognise four associated terms: prevention; captive management; rapid eradication; and long-term management, and note the use of impact mitigation and restoration as associated forms of management. We discuss the wider use of this framework and the supporting activities required to ensure management is well-targeted, cost-effective and makes best use of limited resources.
Journal Article
The role of species charisma in biological invasions
by
Jarić, Ivan
,
Pergl, Jan
,
Pyšková, Klára
in
Attitudes
,
Biological activity
,
Biological invasions
2020
Commonly used in the literature to refer to the “attractiveness”, “appeal”, or “beauty” of a species, charisma can be defined as a set of characteristics – and the perception thereof – that affect people’s attitudes and behaviors toward a species. It is a highly relevant concept for invasion science, with implications across all stages of the invasion process. However, the concept of invasive alien species (IAS) charisma has not yet been systematically investigated. We discuss this concept in detail, provide a set of recommendations for further research, and highlight management implications. We review how charisma affects the processes associated with biological invasions and IAS management, including species introductions and spread, media portrayals, public perceptions of species management, research attention, and active public involvement in research and management. Explicit consideration of IAS charisma is critical for understanding the factors that shape people’s attitudes toward particular species, planning management measures and strategies, and implementing a combination of education programs, awareness raising, and public involvement campaigns.
Journal Article
Identification of 100 fundamental ecological questions
by
Hays, Graeme C.
,
Godfray, H. Charles J.
,
Turnbull, Lindsay A.
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
Appendix
2013
1. Fundamental ecological research is both intrinsically interesting and provides the basic knowledge required to answer applied questions of importance to the management of the natural world. The 100th anniversary of the British Ecological Society in 2013 is an opportune moment to reflect on the current status of ecology as a science and look forward to high-light priorities for future work. 2. To do this, we identified 100 important questions of fundamental importance in pure ecology. We elicited questions from ecologists working across a wide range of systems and disciplines. The 754 questions submitted (listed in the online appendix) from 388 participants were narrowed down to the final 100 through a process of discussion, rewording and repeated rounds of voting. This was done during a two-day workshop and thereafter. 3. The questions reflect many of the important current conceptual and technical pre-occupations of ecology. For example, many questions concerned the dynamics of environmental change and complex ecosystem interactions, as well as the interaction between ecology and evolution. 4. The questions reveal a dynamic science with novel subfields emerging. For example, a group of questions was dedicated to disease and micro-organisms and another on human impacts and global change reflecting the emergence of new subdisciplines that would not have been foreseen a few decades ago. 5. The list also contained a number of questions that have perplexed ecologists for decades and are still seen as crucial to answer, such as the link between population dynamics and life-history evolution. 6. Synthesis. These 100 questions identified reflect the state of ecology today. Using them as an agenda for further research would lead to a substantial enhancement in understanding of the discipline, with practical relevance for the conservation of biodiversity and ecosystem function.
Journal Article
Towards Context-Rich Automated Biodiversity Assessments: Deriving AI-Powered Insights from Camera Trap Data
by
Fergus, Paul
,
Matthews, Naomi
,
Hartley, Oliver
in
Animals
,
Annotations
,
Artificial Intelligence
2024
Camera traps offer enormous new opportunities in ecological studies, but current automated image analysis methods often lack the contextual richness needed to support impactful conservation outcomes. Integrating vision–language models into these workflows could address this gap by providing enhanced contextual understanding and enabling advanced queries across temporal and spatial dimensions. Here, we present an integrated approach that combines deep learning-based vision and language models to improve ecological reporting using data from camera traps. We introduce a two-stage system: YOLOv10-X to localise and classify species (mammals and birds) within images and a Phi-3.5-vision-instruct model to read YOLOv10-X bounding box labels to identify species, overcoming its limitation with hard-to-classify objects in images. Additionally, Phi-3.5 detects broader variables, such as vegetation type and time of day, providing rich ecological and environmental context to YOLO’s species detection output. When combined, this output is processed by the model’s natural language system to answer complex queries, and retrieval-augmented generation (RAG) is employed to enrich responses with external information, like species weight and IUCN status (information that cannot be obtained through direct visual analysis). Combined, this information is used to automatically generate structured reports, providing biodiversity stakeholders with deeper insights into, for example, species abundance, distribution, animal behaviour, and habitat selection. Our approach delivers contextually rich narratives that aid in wildlife management decisions. By providing contextually rich insights, our approach not only reduces manual effort but also supports timely decision making in conservation, potentially shifting efforts from reactive to proactive.
Journal Article
Proximate causes and fitness consequences of double brooding in female barn owls
by
Zabala, Jabi
,
Soufflot, Philibert
,
Lambin, Xavier
in
Animal behavior
,
Animal reproduction
,
Animals
2020
Multiple brooding, reproducing twice or more per year, is an important component of life-history strategies. However, what proximate factors drive the frequency of multiple brooding and its fitness consequences for parents and offspring remains poorly known. Using long-term longitudinal data, we investigated double brooding in a barn owl population in France. We assessed the effects of both extrinsic and intrinsic factors and the consequences of double brooding on fledgling recruitment and female lifetime reproductive success. The occurrence of double brooding in the population, ranging from 0 to 87%, was positively related to the number of rodent prey stored at the nest. Females laying early in the season were more likely to breed twice and the probability of double brooding increased with smaller initial brood size, female age and the storage of wood mice at the nest early in the season. Fledglings from first broods recruited more often (8.2%) than those from single broods (3.8%) or second broods (3.3%), but this was primarily the consequence of laying dates, not brood type per se. Females producing two broods within a year, at least once in their lifetime, had higher lifetime reproductive success and produced more local recruits than females that did not (15.6 ± 8.1 vs. 6.1 ± 3.8 fledglings, 0.96 ± 1.2 vs. 0.24 ± 0.6 recruits). Our results suggests that the fitness benefits of double brooding exceed costs and that within-year variability in double brooding may be related to heterogeneity in individual/territory quality.
Journal Article
Colonisation dynamics during range expansion is poorly predicted by dispersal in the core range
by
Cornulier, Thomas
,
Morgan, William H.
,
Lambin, Xavier
in
Animal behavior
,
Arvicola amphibius
,
Colonization
2019
The potential ranges of many species are shifting due to changing ecological conditions. Where populations become patchy towards the range edge, the realised distribution emerges from colonisation–persistence dynamics. Therefore, a greater understanding of the drivers of these processes, and the spatial scales over which they operate, presents an opportunity to improve predictions of species range expansion under environmental change. Species reintroductions offer an ideal opportunity to investigate the drivers and spatial scale of colonisation dynamics at the range edge. To this effect, we performed and monitored experimental translocations of water voles to quantify how colonisation and local persistence were influenced by habitat quality and occupancy. We used a novel statistical method to simultaneously consider effects across a range of spatial scales. Densely occupied neighbourhoods were highly persistent and frequently colonised. Persistence was more likely in high quality habitat, whereas the influence of habitat quality on colonisation was less clear. Colonisation of suitable habitat in distant, sparsely occupied areas was much less frequent than expected from the well documented high dispersal ability of the species. Persistence of these distant populations was also low, which we attribute to the absence of a rescue effect in sparsely populated neighbourhoods. Our results illustrate a mismatch between the spatial scales of colonisation dynamics in the core and edge of a species’ range, suggesting that recolonisation dynamics in established populations may be a poor predictor of colonisation dynamics at the range edge. Such a mismatch leads to predictions of long lags between the emergence and colonisation of new habitat, with detrimental consequences for a species’ realised distribution, conservation status and contribution to ecosystem function. Conservation translocations that also reinforce existing populations at the range edge might stimulate the rescue effect and mitigate lags in expansion.
Journal Article