Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
141
result(s) for
"Lander, Gabriel C."
Sort by:
High-resolution structure determination of sub-100 kDa complexes using conventional cryo-EM
2019
Determining high-resolution structures of biological macromolecules amassing less than 100 kilodaltons (kDa) has been a longstanding goal of the cryo-electron microscopy (cryo-EM) community. While the Volta phase plate has enabled visualization of specimens in this size range, this instrumentation is not yet fully automated and can present technical challenges. Here, we show that conventional defocus-based cryo-EM methodologies can be used to determine high-resolution structures of specimens amassing less than 100 kDa using a transmission electron microscope operating at 200 keV coupled with a direct electron detector. Our ~2.7 Å structure of alcohol dehydrogenase (82 kDa) proves that bound ligands can be resolved with high fidelity to enable investigation of drug-target interactions. Our ~2.8 Å and ~3.2 Å structures of methemoglobin demonstrate that distinct conformational states can be identified within a dataset for proteins as small as 64 kDa. Furthermore, we provide the sub-nanometer cryo-EM structure of a sub-50 kDa protein.
Despite many recent advances in cryo-EM, imaging smaller macromolecules (below 100 kDa) has remained a challenge. Here the authors show that biological specimens amassing <100 kDa can be resolved to better than 3 Å resolution using conventional defocus-based single-particle analysis methods.
Journal Article
Structure of the cold- and menthol-sensing ion channel TRPM8
2018
Transient receptor potential melastatin (TRPM) ion channels constitute the largest TRP subfamily and are involved in many physiological processes. TRPM8 is the primary cold and menthol sensor, and TRPM4 is associated with cardiovascular disorders. Yin
et al.
and Autzen
et al.
shed light on the general architecture of the TRPM subfamily by solving the structures of TRPM8 and TRPM4, respectively (see the Perspective by Bae
et al.
). The three-layered architecture of the TRPM8 channel provides the framework for understanding the mechanisms of cold and menthol sensing. The two distinct closed states of TRPM4, with and without calcium, reveal a calcium-binding site and calcium-binding-induced conformational changes.
Science
, this issue p.
237
, p.
228
; see also p.
160
The structure of an ion channel provides a framework for understanding the mechanisms of cold and menthol sensing.
Transient receptor potential melastatin (TRPM) cation channels are polymodal sensors that are involved in a variety of physiological processes. Within the TRPM family, member 8 (TRPM8) is the primary cold and menthol sensor in humans. We determined the cryo–electron microscopy structure of the full-length TRPM8 from the collared flycatcher at an overall resolution of ~4.1 ångstroms. Our TRPM8 structure reveals a three-layered architecture. The amino-terminal domain with a fold distinct among known TRP structures, together with the carboxyl-terminal region, forms a large two-layered cytosolic ring that extensively interacts with the transmembrane channel layer. The structure suggests that the menthol-binding site is located within the voltage-sensor–like domain and thus provides a structural glimpse of the design principle of the molecular transducer for cold and menthol sensation.
Journal Article
Conformational switching of the 26S proteasome enables substrate degradation
by
Martin, Andreas
,
Matyskiela, Mary E
,
Lander, Gabriel C
in
631/45/173
,
631/45/474/2085
,
631/535/1258/1259
2013
The proteasome 19S particle processes ubiquitinated substrates, unfolds the polypeptides and translocates them to the 20S core particle. Now cryo-EM analyses of the yeast proteasome in the presence of substrate show the 19S in an active conformation, with the AAA+ ring forming a wider central channel aligned with the 20S pore and the essential deubiquitinase Rpn11 positioned right above it.
The 26S proteasome is the major eukaryotic ATP-dependent protease, responsible for regulating the proteome through degradation of ubiquitin-tagged substrates. Its regulatory particle, containing the heterohexameric AAA+ ATPase motor and the essential deubiquitinase Rpn11, recognizes substrates, removes their ubiquitin chains and translocates them into the associated peptidase after unfolding, but detailed mechanisms remain unknown. Here we present the 26S proteasome structure from
Saccharomyces cerevisiae
during substrate degradation, showing that the regulatory particle switches from a preengaged to a translocation-competent conformation. This conformation is characterized by a rearranged ATPase ring with uniform subunit interfaces, a widened central channel coaxially aligned with the peptidase and a spiral orientation of pore loops that suggests a rapid progression of ATP-hydrolysis events around the ring. Notably, Rpn11 moves from an occluded position to directly above the central pore, thus facilitating substrate deubiquitination concomitant with translocation.
Journal Article
Structural basis for a degenerate tRNA identity code and the evolution of bimodal specificity in human mitochondrial tRNA recognition
by
Doerfel, Lili K.
,
Lander, Gabriel C.
,
Hirschi, Marscha
in
147/28
,
631/337/1645
,
631/337/574/1793
2023
Animal mitochondrial gene expression relies on specific interactions between nuclear-encoded aminoacyl-tRNA synthetases and mitochondria-encoded tRNAs. Their evolution involves an antagonistic interplay between strong mutation pressure on mtRNAs and selection pressure to maintain their essential function. To understand the molecular consequences of this interplay, we analyze the human mitochondrial serylation system, in which one synthetase charges two highly divergent mtRNA
Ser
isoacceptors. We present the cryo-EM structure of human mSerRS in complex with mtRNA
Ser(UGA)
, and perform a structural and functional comparison with the mSerRS-mtRNA
Ser(GCU)
complex. We find that despite their common function, mtRNA
Ser(UGA)
and mtRNA
Ser(GCU)
show no constrain to converge on shared structural or sequence identity motifs for recognition by mSerRS. Instead, mSerRS evolved a bimodal readout mechanism, whereby a single protein surface recognizes degenerate identity features specific to each mtRNA
Ser
. Our results show how the mutational erosion of mtRNAs drove a remarkable innovation of intermolecular specificity rules, with multiple evolutionary pathways leading to functionally equivalent outcomes.
Aminoacyl-tRNA synthetases catalyze the ligation of amino acids to their cognate tRNAs. Here the authors report the cryo-EM structure of a human mitochondrial seryl-tRNA synthetase•mtRNA
Ser
complex showing how strong mutation pressure on mtRNA genes drove a rewiring of intermolecular recognition rules.
Journal Article
Cryo-EM structure of a mitochondrial calcium uniporter
by
Wu, Mengyu
,
Herzik, Mark A.
,
Lander, Gabriel C.
in
Amino Acid Motifs
,
Calcium
,
Calcium (mitochondrial)
2018
Maintaining the correct balance of calcium concentrations between the cytosol and the mitochondria is essential for cellular physiology. A calcium-selective channel called the mitochondrial calcium uniporter (MCU) mediates calcium entry into mitochondria. Yoo
et al.
report the high-resolution structure of MCU from
Neurospora crassa.
The channel is formed by four MCU protomers with differing symmetry between the soluble and membrane domains. The structure, together with mutagenesis, suggests that two acidic rings inside the channel provide the selectivity for calcium.
Science
, this issue p.
506
The structure of the mitochondrial calcium uniporter reveals a tetrameric architecture and the molecular framework underlying calcium selectivity.
Calcium transport plays an important role in regulating mitochondrial physiology and pathophysiology. The mitochondrial calcium uniporter (MCU) is a calcium-selective ion channel that is the primary mediator for calcium uptake into the mitochondrial matrix. Here, we present the cryo–electron microscopy structure of the full-length MCU from
Neurospora crassa
to an overall resolution of ~3.7 angstroms. Our structure reveals a tetrameric architecture, with the soluble and transmembrane domains adopting different symmetric arrangements within the channel. The conserved W-D-Φ-Φ-E-P-V-T-Y sequence motif of MCU pore forms a selectivity filter comprising two acidic rings separated by one helical turn along the central axis of the channel pore. The structure combined with mutagenesis gives insight into the basis of calcium recognition.
Journal Article
Structural organization of the dynein–dynactin complex bound to microtubules
by
Lander, Gabriel C
,
Schroer, Trina A
,
Chowdhury, Saikat
in
631/45/612/1228
,
631/535/1258
,
631/535/1258/1259
2015
EM analyses reveal the architecture of cytoplasmic dynein in complex with dynactin and the BicD2 cargo adaptor on microtubules, showing the quaternary complex positioned for unidirectional movement and cargo recruitment.
Cytoplasmic dynein associates with dynactin to drive cargo movement on microtubules, but the structure of the dynein–dynactin complex is unknown. Using electron microscopy, we determined the organization of native bovine dynein, dynactin and the dynein–dynactin–microtubule quaternary complex. In the microtubule-bound complex, the dynein motor domains are positioned for processive unidirectional movement, and the cargo-binding domains of both dynein and dynactin are accessible.
Journal Article
Conformational ensemble of the human TRPV3 ion channel
2018
Transient receptor potential vanilloid channel 3 (TRPV3), a member of the thermosensitive TRP (thermoTRPV) channels, is activated by warm temperatures and serves as a key regulator of normal skin physiology through the release of pro-inflammatory messengers. Mutations in
trpv3
have been identified as the cause of the congenital skin disorder, Olmsted syndrome. Unlike other members of the thermoTRPV channel family, TRPV3 sensitizes upon repeated stimulation, yet a lack of structural information about the channel precludes a molecular-level understanding of TRPV3 sensitization and gating. Here, we present the cryo-electron microscopy structures of apo and sensitized human TRPV3, as well as several structures of TRPV3 in the presence of the common thermoTRPV agonist 2-aminoethoxydiphenyl borate (2-APB). Our results show α-to-π-helix transitions in the S6 during sensitization, and suggest a critical role for the S4-S5 linker π-helix during ligand-dependent gating.
Transient receptor potential vanilloid channel 3 (TRPV3) responds to temperature and sensitizes upon repeated stimulation with either heat or agonists. Here authors present the cryo-EM structures of apo and sensitized human TRPV3 and describe the structural basis of sensitization.
Journal Article
Structural basis for shape-selective recognition and aminoacylation of a D-armless human mitochondrial tRNA
by
Doerfel, Lili K.
,
Lander, Gabriel C.
,
Hirschi, Marscha
in
147/28
,
631/181/735
,
631/337/574/1793
2022
Human mitochondrial gene expression relies on the specific recognition and aminoacylation of mitochondrial tRNAs (mtRNAs) by nuclear-encoded mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs). Despite their essential role in cellular energy homeostasis, strong mutation pressure and genetic drift have led to an unparalleled sequence erosion of animal mtRNAs. The structural and functional consequences of this erosion are not understood. Here, we present cryo-EM structures of the human mitochondrial seryl-tRNA synthetase (mSerRS) in complex with mtRNA
Ser(GCU)
. These structures reveal a unique mechanism of substrate recognition and aminoacylation. The mtRNA
Ser(GCU)
is highly degenerated, having lost the entire D-arm, tertiary core, and stable L-shaped fold that define canonical tRNAs. Instead, mtRNA
Ser(GCU)
evolved unique structural innovations, including a radically altered T-arm topology that serves as critical identity determinant in an unusual shape-selective readout mechanism by mSerRS. Our results provide a molecular framework to understand the principles of mito-nuclear co-evolution and specialized mechanisms of tRNA recognition in mammalian mitochondrial gene expression.
Mitochondrial tRNAs are indispensable and yet underwent an extreme mutational erosion. The authors report the structures of a mitochondrial aaRS-tRNA complex and show how the most degenerated of all human mtRNAs is recognized by its cognate synthetase to maintain mitochondrial gene expression.
Journal Article
Structures of the human LONP1 protease reveal regulatory steps involved in protease activation
by
Griffin, Patrick R.
,
Novick, Scott J.
,
Wiseman, R. Luke
in
101/28
,
631/337/474/1768
,
631/45/535
2021
The human mitochondrial AAA+ protein LONP1 is a critical quality control protease involved in regulating diverse aspects of mitochondrial biology including proteostasis, electron transport chain activity, and mitochondrial transcription. As such, genetic or aging-associated imbalances in LONP1 activity are implicated in pathologic mitochondrial dysfunction associated with numerous human diseases. Despite this importance, the molecular basis for LONP1-dependent proteolytic activity remains poorly defined. Here, we solved cryo-electron microscopy structures of human LONP1 to reveal the underlying molecular mechanisms governing substrate proteolysis. We show that, like bacterial Lon, human LONP1 adopts both an open and closed spiral staircase orientation dictated by the presence of substrate and nucleotide. Unlike bacterial Lon, human LONP1 contains a second spiral staircase within its ATPase domain that engages substrate as it is translocated toward the proteolytic chamber. Intriguingly, and in contrast to its bacterial ortholog, substrate binding within the central ATPase channel of LONP1 alone is insufficient to induce the activated conformation of the protease domains. To successfully induce the active protease conformation in substrate-bound LONP1, substrate binding within the protease active site is necessary, which we demonstrate by adding bortezomib, a peptidomimetic active site inhibitor of LONP1. These results suggest LONP1 can decouple ATPase and protease activities depending on whether AAA+ or both AAA+ and protease domains bind substrate. Importantly, our structures provide a molecular framework to define the critical importance of LONP1 in regulating mitochondrial proteostasis in health and disease.
The human mitochondrial protease LONP1 is an AAA+ ATP-dependent quality control protease. Here, the authors present the cryo-EM structures of human LONP1 in three distinct states and provide insights into the mechanism and regulation of this important protease.
Journal Article
Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome
by
Martin, Andreas
,
Matyskiela, Mary E
,
Dambacher, Corey M
in
101/28
,
631/337/474/2289
,
631/45/173
2015
Electron microscopy and biochemistry analyses reveal that the deubiquitinase Ubp6, in its ubiquitin-bound form, inhibits substrate deubiquitination by Rpn11, stabilizes the proteasome in a substrate-engaged conformation and interferes with the engagement of a subsequent substrate.
Substrates are targeted for proteasomal degradation through the attachment of ubiquitin chains that need to be removed by proteasomal deubiquitinases before substrate processing. In budding yeast, the deubiquitinase Ubp6 trims ubiquitin chains and affects substrate processing by the proteasome, but the underlying mechanisms and the location of Ubp6 within the holoenzyme have been elusive. Here we show that Ubp6 activity strongly responds to interactions with the base ATPase and the conformational state of the proteasome. Electron microscopy analyses reveal that ubiquitin-bound Ubp6 contacts the N ring and AAA+ ring of the ATPase hexamer and is in proximity to the deubiquitinase Rpn11. Ubiquitin-bound Ubp6 inhibits substrate deubiquitination by Rpn11, stabilizes the substrate-engaged conformation of the proteasome and allosterically interferes with the engagement of a subsequent substrate. Ubp6 may thus act as a ubiquitin-dependent 'timer' to coordinate individual processing steps at the proteasome and modulate substrate degradation.
Journal Article