Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
11
result(s) for
"Lanfranconi, Mariana P."
Sort by:
Anthropogenic perturbations in marine microbial communities
by
Piña-Villalonga, Juana M
,
Lanfranconi, Mariana P
,
Bosch, Rafael
in
Animal, plant and microbial ecology
,
Animals
,
Anthropogenic factors
2011
Human activities impact marine ecosystems at a global scale and all levels of complexity of life. Despite their importance as key players in ecosystem processes, the stress caused to microorganisms has been greatly neglected. This fact is aggravated by difficulties in the analysis of microbial communities and their high diversity, making the definition of patterns difficult. In this review, we discuss the effects of nutrient increase, pollution by organic chemicals and heavy metals and the introduction of antibiotics and pathogens into the environment. Microbial communities respond positively to nutrients and chemical pollution by increasing cell numbers. There are also significant changes in community composition, increases in diversity and high temporal variability. These changes, which evidence the modification of the environmental conditions due to anthropogenic stress, usually alter community functionality, although this aspect has not been explored in depth. Altered microbial communities in human-impacted marine environments can in turn have detrimental effects on human health (i.e. spread of pathogens and antibiotic resistance). New threats to marine ecosystems, i.e. related to climate change, could also have an impact on microbial communities. Therefore, an effort dedicated to analyse the microbial compartment in detail should be made when studying the impact of anthropogenic activities on marine ecosystems.
Journal Article
Rhodococcus as Biofactories for Microbial Oil Production
by
Silva, Roxana A.
,
Hernández, Martín A.
,
Alvarez, Héctor M.
in
Bacteria
,
biofactory
,
Biosynthesis
2021
Bacteria belonging to the Rhodococcus genus are frequent components of microbial communities in diverse natural environments. Some rhodococcal species exhibit the outstanding ability to produce significant amounts of triacylglycerols (TAG) (>20% of cellular dry weight) in the presence of an excess of the carbon source and limitation of the nitrogen source. For this reason, they can be considered as oleaginous microorganisms. As occurs as well in eukaryotic single-cell oil (SCO) producers, these bacteria possess specific physiological properties and molecular mechanisms that differentiate them from other microorganisms unable to synthesize TAG. In this review, we summarized several of the well-characterized molecular mechanisms that enable oleaginous rhodococci to produce significant amounts of SCO. Furthermore, we highlighted the ability of these microorganisms to degrade a wide range of carbon sources coupled to lipogenesis. The qualitative and quantitative oil production by rhodococci from diverse industrial wastes has also been included. Finally, we summarized the genetic and metabolic approaches applied to oleaginous rhodococci to improve SCO production. This review provides a comprehensive and integrating vision on the potential of oleaginous rhodococci to be considered as microbial biofactories for microbial oil production.
Journal Article
High wax ester and triacylglycerol biosynthesis potential in coastal sediments of Antarctic and Subantarctic environments
2023
The wax ester (WE) and triacylglycerol (TAG) biosynthetic potential of marine microorganisms is poorly understood at the microbial community level. The goal of this work was to uncover the prevalence and diversity of bacteria with the potential to synthesize these neutral lipids in coastal sediments of two high latitude environments, and to characterize the gene clusters related to this process. Homolog sequences of the key enzyme, the wax ester synthase/acyl-CoA:diacylglycerol acyltransferase (WS/DGAT) were retrieved from 13 metagenomes, including subtidal and intertidal sediments of a Subantarctic environment (Ushuaia Bay, Argentina), and subtidal sediments of an Antarctic environment (Potter Cove, Antarctica). The abundance of WS/DGAT homolog sequences in the sediment metagenomes was 1.23 ± 0.42 times the abundance of 12 single-copy genes encoding ribosomal proteins, higher than in seawater (0.13 ± 0.31 times in 338 metagenomes). Homolog sequences were highly diverse, and were assigned to the Pseudomonadota, Actinomycetota, Bacteroidota and Acidobacteriota phyla. The genomic context of WS/DGAT homologs included sequences related to WE and TAG biosynthesis pathways, as well as to other related pathways such as fatty-acid metabolism, suggesting carbon recycling might drive the flux to neutral lipid synthesis. These results indicate the presence of abundant and taxonomically diverse bacterial populations with the potential to synthesize lipid storage compounds in marine sediments, relating this metabolic process to bacterial survival.
Journal Article
Olive Pruning: Waste or Growth Media? Expanding the Metabolic Potential of Phyllospheric Rhodococcus sp. 24CO
by
Arias, Nadia S.
,
Sandoval, Natalia E.
,
Alvarez, Héctor M.
in
Annotations
,
Biodegradation
,
Biomass
2025
Rhodococcus sp. 24CO, isolated from the olive phyllosphere, can accumulate significant amounts of neutral lipids, making it a promising candidate for biomass production from olive pruning waste. The strain efficiently converts this residue to neutral lipids, achieving a yield of over 20% of the cellular dry weight (CDW). This indicates that olive leaves, a by-product of the olive oil industry, could become a valuable resource for both the economy and the environment. Genome analysis revealed various metabolic pathways for converting carbon sources to neutral lipids, while phenotypic studies showed that the strain is selective about its carbon sources, thriving on specific monosaccharides and polyols found in olive leaves. Notably, fructose and mannitol were rapidly metabolized, leading to a content of stored triacylglycerides of up to 47% and 28% of the CDW, respectively. The strain also exhibited oleagenicity under high nitrogen availability when grown on mannitol. Finally, potential oleagenicity determinants were explored through an omics comparison.
Journal Article
Insights into the evolutionary history of the virulent factor HBHA of Mycobacterium tuberculosis
2021
In Mycobacterium tuberculosis, heparin-binding hemagglutinin (HBHAMT) has a relevant role in infection. It is also present in non-virulent mycobacteria and ancient actinobacteria, such as Rhodococcus opacus. To have a better understanding of the underlying mechanisms that shaped the evolutionary divergence of these proteins, we performed a comprehensive phylogenetic analysis of the regulatory sequences that drive the expression of hbha in saprophytic and pathogenic mycobacterial species. The alignment of the hbha loci showed the appearance of intergenic sequences containing regulatory elements upstream the hbha gene; this sequence arrangement is present only in slow-growing pathogenic mycobacteria. The heterologous expression of HBHAMT in oleaginous R. opacus PD630 results in protein binding to lipid droplets, as it happens with HBHA proteins from saprophytic mycobacteria. We hypothesize that mycobacterial hbha gene cluster underwent functional divergence during the evolutionary differentiation of slow-growing pathogenic mycobacteria. We propose here an evolutionary scenario to explain the structural and functional divergence of HBHA in fast and slow-growing mycobacteria.
Journal Article
Rhodococcus bacteria as a promising source of oils from olive mill wastes
by
Lanfranconi, Mariana P
,
Villalba, María S
,
Herrero, O Marisa
in
Bioconversion
,
Biomass
,
Carbon/nitrogen ratio
2018
The accumulation of triacylglycerols (TAG) is a common feature among actinobacteria belonging to Rhodococcus genus. Some rhodococcal species are able to produce significant amounts of those lipids from different single substrates, such as glucose, gluconate or hexadecane. In this study we analyzed the ability of different species to produce lipids from olive oil mill wastes (OMW), and the possibility to enhance lipid production by genetic engineering. OMW base medium prepared from alperujo, which exhibited high values of chemical oxygen demand (127,000 mg/l) and C/N ratio (508), supported good growth and TAG production by some rhodococci. R. opacus, R. wratislaviensis and R. jostii were more efficient at producing cell biomass (2.2–2.7 g/l) and lipids (77–83% of CDW, 1.8–2.2 g/l) from OMW than R. fascians, R. erythropolis and R. equi (1.1–1.6 g/l of cell biomass and 7.1–14.0% of CDW, 0.1–0.2 g/l of lipids). Overexpression of a gene coding for a fatty acid importer in R. jostii RHA1 promoted an increase of 2.2 fold of cellular biomass value with a concomitant increase in lipids production during cultivation of cells in OMW. This study demonstrates that the bioconversion of OMW to microbial lipids is feasible using more robust rhodococal strains. The efficiency of this bioconversion can be significantly enhanced by engineering strategies.
Journal Article
Short-term changes in the composition of active marine bacterial assemblages in response to diesel oil pollution
by
Bosch, Rafael
,
Lanfranconi, Mariana P.
,
Nogales, Balbina
in
Bacteria
,
Bacteria - classification
,
Bacteria - drug effects
2010
Summary The changes caused by diesel oil pollution in the metabolically active bacterioplankton from an oligotrophic coastal location were analysed in laboratory microcosms (44 l) using 16S ribosomal RNA (16S rRNA) as molecular marker. The aim was to simulate typical hydrocarbon pollution events in a coastal area exploited for seasonal touristic activities. The experiment consisted in addition of low amounts of diesel oil without nutrients to seawater collected at different times (winter and summer). Bacterial diversity was analysed by terminal‐restriction fragment length polymorphism (T‐RFLP) profiling of 16S rRNAs after reverse transcription polymerase chain reaction (RT‐PCR), and by generation of 16S rRNA clone libraries in control and diesel‐polluted microcosms. Diesel addition caused a twofold increase in prokaryotic numbers in comparison with controls at the end of the experiment, both in winter and summer microcosms. Bacterioplankton composition, determined by 16S rRNA T‐RFLP data, changed rapidly (within 17 h) in response to treatment. The resulting communities were different in microcosms with water collected in summer and winter. A reduction in diversity (Shannon index, calculated on the basis of T‐RFLP data) was observed only in summer microcosms. This was due to the rapid increase of phylotypes affiliated to the Oceanospirillaceae, not observed in winter microcosms. After diesel treatment there was a reduction in the number of phylotypes related to SAR11, SAR86 and picocyanobacteria, while phylotypes of the Roseobacter clade, and the OMG group seemed to be favoured. Our results show that diesel pollution alone caused profound effects on the bacterioplankton of oligotrophic seawater, and explained many of the differences in diversity reported previously in pristine and polluted sites in this coastal area.
Journal Article
Identification of genes coding for putative wax ester synthase/diacylglycerol acyltransferase enzymes in terrestrial and marine environments
by
Alvarez, Adrián F
,
Lanfranconi, Mariana P
,
Alvarez, Héctor M
in
Biomedical and Life Sciences
,
Biotechnology
,
Life Sciences
2015
Synthesis of neutral lipids such as triacylglycerols (TAG) and wax esters (WE) is catalyzed in bacteria by wax ester synthase/diacylglycerol acyltransferase enzymes (WS/DGAT). We investigated the diversity of genes encoding this enzyme in contrasting natural environments from Patagonia (Argentina). The content of petroleum hydrocarbons in samples collected from oil-producing areas was measured. PCR-based analysis covered WS/DGAT occurrence in marine sediments and soil. No product was obtained in seawater samples. All clones retrieved from marine sediments affiliated with gammaproteobacterial sequences and within them, most phylotypes formed a unique cluster related to putative WS/DGAT belonging to marine OM60 clade. In contrast, soils samples contained phylotypes only related to actinomycetes. Among them, phylotypes affiliated with representatives largely or recently reported as oleaginous bacteria, as well as with others considered as possible lipid-accumulating bacteria based on the analysis of their annotated genomes. Our study shows for the first time that the environment could contain a higher variety of
ws/dgat
than that reported from bacterial isolates. The results of this study highlight the relevance of the environment in a natural process such as the synthesis and accumulation of neutral lipids. Particularly, both marine sediments and soil may serve as a useful source for novel WS/DGAT with biotechnological interest.
Journal Article
Physiological role of NahW, the additional salicylate hydroxylase found in Pseudomonas stutzeri AN10
by
Martín-Cardona, Cèlia
,
Lalucat, Jorge
,
Lanfranconi, Mariana P
in
Bacteriology
,
Biological and medical sciences
,
Biology of microorganisms of confirmed or potential industrial interest
2009
The physiological role of NahW, the second salicylate hydroxylase of Pseudomonas stutzeri AN10, has been analysed by gene mutation and further complementation. When grown on naphthalene as a unique carbon and energy source, the nahW mutant showed a strong decrease in salicylate hydroxylase activity when compared with the wild-type strain, exhibited lower specific growth rates and accumulated salicylate in culture supernatants. Similarly, lower specific growth rates and salicylate accumulation were observed for the nahW mutant when growth on naphthalene supplemented with succinate or pyruvate. When P. stutzeri AN10 was grown in Luria-Bertani medium in the presence of salicylate, or was cultivated on minimal medium supplemented with salicylate as a unique carbon and energy source, an increase in the lag phase and a decrease in the specific growth rate were observed on increasing the salicylate concentrations, suggesting a plausible toxic effect. This toxic effect of salicylate was much more evident for the nahW mutant than for the wild-type strain. Complementation of the nahW mutant restored all growth parameters. These results indicate that NahW may have two functions in P. stutzeri AN10: (1) to improve its capacity to degrade naphthalene and (2) effectively convert the salicylate produced during naphthalene degradation to tricarboxylic acid cycle intermediates, preventing its toxic effect.
Journal Article