Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
66
result(s) for
"Langer, Fabian"
Sort by:
A high-repetition rate attosecond light source for time-resolved coincidence spectroscopy
by
Mauritsson, Johan
,
Langer, Fabian
,
Olofsson, Anna
in
Angular resolution
,
Atom and Molecular Physics and Optics
,
Atom- och molekylfysik och optik (Här ingår: Kemisk fysik, kvantoptik)
2021
Attosecond pulses, produced through high-order harmonic generation in gases, have been successfully used for observing ultrafast, subfemtosecond electron dynamics in atoms, molecules and solid state systems. Today’s typical attosecond sources, however, are often impaired by their low repetition rate and the resulting insufficient statistics, especially when the number of detectable events per shot is limited. This is the case for experiments, where several reaction products must be detected in coincidence, and for surface science applications where space charge effects compromise spectral and spatial resolution. In this work, we present an attosecond light source operating at 200 kHz, which opens up the exploration of phenomena previously inaccessible to attosecond interferometric and spectroscopic techniques. Key to our approach is the combination of a high-repetition rate, few-cycle laser source, a specially designed gas target for efficient high harmonic generation, a passively and actively stabilized pump-probe interferometer and an advanced 3D photoelectron/ion momentum detector. While most experiments in the field of attosecond science so far have been performed with either single attosecond pulses or long trains of pulses, we explore the hitherto mostly overlooked intermediate regime with short trains consisting of only a few attosecond pulses. We also present the first coincidence measurement of single-photon double-ionization of helium with full angular resolution, using an attosecond source. This opens up for future studies of the dynamic evolution of strongly correlated electrons.
Journal Article
Relaxation Oscillations and Ultrafast Emission Pulses in a Disordered Expanding Polariton Condensate
by
Pieczarka, Maciej
,
Höfling, Sven
,
Dusanowski, Łukasz
in
639/624/1020/1090
,
639/624/400/2797
,
639/624/400/385
2017
Semiconductor microcavities are often influenced by structural imperfections, which can disturb the flow and dynamics of exciton-polariton condensates. Additionally, in exciton-polariton condensates there is a variety of dynamical scenarios and instabilities, owing to the properties of the incoherent excitonic reservoir. We investigate the dynamics of an exciton-polariton condensate which emerges in semiconductor microcavity subject to disorder, which determines its spatial and temporal behaviour. Our experimental data revealed complex burst-like time evolution under non-resonant optical pulsed excitation. The temporal patterns of the condensate emission result from the intrinsic disorder and are driven by properties of the excitonic reservoir, which decay in time much slower with respect to the polariton condensate lifetime. This feature entails a relaxation oscillation in polariton condensate formation, resulting in ultrafast emission pulses of coherent polariton field. The experimental data can be well reproduced by numerical simulations, where the condensate is coupled to the excitonic reservoir described by a set of rate equations. Theory suggests the existence of slow reservoir temporarily emptied by stimulated scattering to the condensate, generating ultrashort pulses of the condensate emission.
Journal Article
Lightwave control of the valley pseudospin in a monolayer of tungsten diselenide
by
Langer, Fabian
,
Huttner, Ulrich
,
Korn, Tobias
in
Carrier waves
,
Monolayers
,
Translational motion
2019
As conventional electronic is approaching its ultimate limits, tremendous efforts have been taken to explore novel concepts of ultrafast quantum control. Lightwave electronics - the foundation of attosecond science - has opened a spectacular perspective by utilizing the oscillating carrier wave of an intense light pulse to control the translational motion of the electron’s charge faster than a single cycle of light [1-7]. Despite their promising potential as future information carriers [8,10], the internal quantum attributes such as spins and valley pseudospins have not been switchable at optical clock rates. Here we demonstrate a novel subcycle control scheme of the electron’s pseudospin in a monolayer of tungsten diselenide using strong mid-infrared lightwaves [9]. Our work opens the door towards systematic valleytronic protocols at optical clock rates.
Journal Article
Nanoparticle ink‐based silicon Schottky diodes operating up to 2.84 GHz
2020
Today's printed, flexible electronics are often limited by the electronic performance enabled by the used functional semiconductor ink. Thin films from such inks typically exhibit a low charge carrier mobility, which inhibits high frequency device operation and limits their use for applications within the Internet‐of‐Things concept, such as wireless electronic tags and sensors. Our approach to overcome this issue is the use of printable silicon. The silicon is deposited using nanoparticle inks and is subsequently processed into self‐organized crystalline μ‐cone shaped structures using an excimer laser treatment. Due to the high crystallinity of the Si μ‐cones, they can be used for devices capable of high frequency operation. In this article, this is demonstrated on the example of a Schottky diode operating at switching speeds up to 2.84 GHz and thereby putting printable high frequency electronics within reach.
Printed, flexible electronics are an important part within the Internet‐of‐Things concept, due to the potential for high‐throughput and cost‐effective manufacturing. In line with this, a new type of Schottky diode based on a printable and laser modified silicon nanoparticle thin film is presented, which operates at switching speeds up to 2.84 GHz.
Journal Article
Structural and optical properties of position-retrievable low-density GaAs droplet epitaxial quantum dots for application to single photon sources with plasmonic optical coupling
The position of a single GaAs quantum dot (QD), which is optically active, grown by low-density droplet epitaxy (DE) (approximately 4 QDs/μm2), was directly observed on the surface of a 45-nm-thick Al0.3Ga0.7As capping layer. The thin thickness of AlGaAs capping layer is useful for single photon sources with plasmonic optical coupling. A micro-photoluminescence for GaAs DE QDs has shown exciton/biexciton behavior in the range of 1.654 to 1.657 eV. The direct observation of positions of low-density GaAs DE QDs would be advantageous for mass fabrication of devices that use a single QD, such as single photon sources.
Journal Article
Towards Audit Requirements for AI-based Systems in Mobility Applications
by
Schneider, Georg
,
Arndt von Twickel
,
Langer, Fabian
in
Advanced driver assistance systems
,
Algorithms
,
Artificial intelligence
2023
Various mobility applications like advanced driver assistance systems increasingly utilize artificial intelligence (AI) based functionalities. Typically, deep neural networks (DNNs) are used as these provide the best performance on the challenging perception, prediction or planning tasks that occur in real driving environments. However, current regulations like UNECE R 155 or ISO 26262 do not consider AI-related aspects and are only applied to traditional algorithm-based systems. The non-existence of AI-specific standards or norms prevents the practical application and can harm the trust level of users. Hence, it is important to extend existing standardization for security and safety to consider AI-specific challenges and requirements. To take a step towards a suitable regulation we propose 50 technical requirements or best practices that extend existing regulations and address the concrete needs for DNN-based systems. We show the applicability, usefulness and meaningfulness of the proposed requirements by performing an exemplary audit of a DNN-based traffic sign recognition system using three of the proposed requirements.
Few-cycle lightwave-driven currents in a semiconductor at high repetition rate
by
Liu, Yen-Po
,
Sytcevich, Ivan
,
Langer, Fabian
in
Charge transfer
,
Computer simulation
,
Electric contacts
2020
When an intense, few-cycle light pulse impinges on a dielectric or semiconductor material, the electric field will interact nonlinearly with the solid, driving a coherent current. An asymmetry of the ultrashort, carrier-envelope-phase-stable waveform results in a net transfer of charge, which can be measured by macroscopic electric contact leads. This effect has been pioneered with extremely short, single-cycle laser pulses at low repetition rate, thus limiting the applicability of its potential for ultrafast electronics. We investigate lightwave-driven currents in gallium nitride using few-cycle laser pulses of nearly twice the duration and at a repetition rate two orders of magnitude higher than in previous work. We successfully simulate our experimental data with a theoretical model based on interfering multiphoton transitions, using the exact laser pulse shape retrieved from dispersion-scan measurements. Substantially increasing the repetition rate and relaxing the constraint on the pulse duration marks an important step forward towards applications of lightwave-driven electronics.
Ghost Branch Photoluminescence From a Polariton Fluid Under Nonresonant Excitation
2015
An expanding polariton condensate is investigated under pulsed nonresonant excitation with a small laser pump spot. Far above the condensation threshold we observe a pronounced increase in the dispersion curvature with a subsequent linearization of the spectrum and strong luminescence from a ghost branch orthogonally polarized with respect to the linearly polarized condensate emission. The presence of the ghost branch has been confirmed in time-resolved measurements. The dissipative and nonequilibrium effects in the photoluminescence of polariton condensates and their excitations are discussed.
A high-repetition rate attosecond light source for time-resolved coincidencespectroscopy
by
Mauritsson, Johan
,
Langer, Fabian
,
Olofsson, Anna
in
Angular resolution
,
Attosecond pulses
,
Harmonic generations
2020
Attosecond pulses, produced through high-order harmonic generation in gases, have been successfully used for observing ultrafast, sub-femtosecond electron dynamics in atoms, molecules and solid state systems. Today's typical attosecond sources, however, are often impaired by their low repetition rate and the resulting insufficient statistics, especially when the number of detectable events per shot is limited. This is the case for experiments where several reaction products must be detected in coincidence, and for surface science applications where space-charge effects compromise spectral and spatial resolution. In this work, we present an attosecond light source operating at 200 kHz, which opens up the exploration of phenomena previously inaccessible to attosecond interferometric and spectroscopic techniques. Key to our approach is the combination of a high repetition rate, few-cycle laser source, a specially designed gas target for efficient high harmonic generation, a passively and actively stabilized pump-probe interferometer and an advanced 3D photoelectron/ion momentum detector. While most experiments in the field of attosecond science so far have been performed with either single attosecond pulses or long trains of pulses, we explore the hitherto mostly overlooked intermediate regime with short trains consisting of only a few attosecond pulses.e also present the first coincidence measurement of single-photon double ionization of helium with full angular resolution, using an attosecond source. This opens up for future studies of the dynamic evolution of strongly correlated electrons.
Relaxation Oscillations and Ultrafast Emission Pulses in a Disordered Expanding Polariton Condensate
by
Pieczarka, Maciej
,
Höfling, Sven
,
Dusanowski, Łukasz
in
Computer simulation
,
Condensates
,
Decay rate
2017
Semiconductor microcavities are often influenced by structural imperfections, which can disturb the flow and dynamics of exciton-polariton condensates. Additionally, in exciton-polariton condensates there is a variety of dynamical scenarios and instabilities, owing to the properties of the incoherent excitonic reservoir. We investigate the dynamics of an exciton-polariton condensate which emerges in semiconductor microcavity subject to disorder, which determines its spatial and temporal behaviour. Our experimental data revealed complex burst-like time evolution under non-resonant optical pulsed excitation. The temporal patterns of the condensate emission result from the intrinsic disorder and are driven by properties of the excitonic reservoir, which decay in time much slower with respect to the polariton condensate lifetime. This feature entails a relaxation oscillation in polariton condensate formation, resulting in ultrafast emission pulses of coherent polariton field. The experimental data can be well reproduced by numerical simulations, where the condensate is coupled to the excitonic reservoir described by a set of rate equations. Theory suggests the existence of slow reservoir temporarily emptied by stimulated scattering to the condensate, generating ultrashort pulses of the condensate emission.