Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
20
result(s) for
"Langlais, Alexandra"
Sort by:
Neoadjuvant durvalumab for resectable non-small-cell lung cancer (NSCLC): results from a multicenter study (IFCT-1601 IONESCO)
by
Damotte, Diane
,
Lavole, Armelle
,
Le Pimpec Barthes, Francoise
in
Biomarkers, Tumor
,
Cancer
,
Cancer therapies
2022
BackgroundThe IONESCO (IFCT-1601) trial assessed the feasibility of neoadjuvant durvalumab, for early-stage resectable non-small-cell lung cancer (NSCLC).MethodsIn a multicenter, single-arm, phase II trial, patients with IB (≥4 cm)-IIIA, non-N2, resectable NSCLC received three doses of durvalumab (750 mg every 2 weeks) and underwent surgery between 2 and 14 days after the last infusion. The primary endpoint was the complete surgical resection rate. Secondary endpoints included tumor response rate, major histopathological response (MPR: ≤10% remaining viable tumor cells), disease-free survival (DFS), overall survival (OS), durvalumab-related safety, and 90-day postoperative mortality (NCT03030131).ResultsForty-six patients were eligible (median age 60.9 years); 67% were male, 98% were smokers, and 41% had squamous cell carcinoma. Regarding tumor response, 9% had a partial response, 78% had stable disease, and 13% had progressive disease. Among the operated patients (n=43), 41 achieved complete resection (89%, 95% CI 80.1% to 98.1%)), and eight achieved MPR (19%). The 12-month median OS and DFS rates were 89% (95% CI 75.8% to 95.3%) and 78% (95% CI 63.4% to 87.7%), respectively (n=46). The median follow-up was 28.4 months (12.8–41.1). All patients in whom MPR was achieved were disease-free at 12 months compared to only 11% of those with >10% residual tumor cells (p=0.04). No durvalumab-related serious or grade 3–5 events were reported. The unexpected 90-day postoperative mortality of four patients led to premature study termination. None of these four deaths was considered secondary to direct durvalumab-related toxicity.ConclusionsNeoadjuvant durvalumab given as monotherapy was associated with an 89% complete resection rate and an MPR of 19%. Despite an unexpectedly high rate of postoperative deaths, which prevented us from completing the trial, we were able to show a significant association between MPR and DFS.
Journal Article
The new Common Agricultural Policy: reflecting an agro-ecological transition. The legal perspective
2023
Langlais reflects on an agro-ecological transition, highlighting the Common Agricultural Policy (CAP) in the European Union. While agriculture's shift towards an agro-ecological transition is considered not only necessary but also obvious in the form that it should take, the current CAP reform, which will not be implemented until 2023, offers an ideal opportunity to assess the reality of this statement. Several legal texts, in particular the regulation of December 6, 2023 on national Strategic Plans, set out this reform for greater environmental integration and will form the basis of our analysis. The European regulation on national Strategic Plans is of specific importance insofar as it establishes the \"rules governing support for Strategic Plans to be drawn up by Member States within the framework of the CAP.\" These plans are now at the heart of the new CAP, representing the key tool both to construct and implement the future policy.
Journal Article
Adaptive radiotherapy (up to 74 Gy) or standard radiotherapy (66 Gy) for patients with stage III non-small-cell lung cancer, according to 18FFDG-PET tumour residual uptake at 42 Gy (RTEP7-IFCT-1402): a multicentre, randomised, controlled phase 2 trial
Thoracic radiation intensification is debated in patients with stage III non-small-cell lung cancer (NSCLC). We aimed to assess the activity and safety of a boost radiotherapy dose up to 74 Gy in a functional sub-volume given according to on-treatment [18F]fluorodeoxyglucose ([18F]FDG)-PET results.BACKGROUNDThoracic radiation intensification is debated in patients with stage III non-small-cell lung cancer (NSCLC). We aimed to assess the activity and safety of a boost radiotherapy dose up to 74 Gy in a functional sub-volume given according to on-treatment [18F]fluorodeoxyglucose ([18F]FDG)-PET results.In this multicentre, randomised, controlled non-comparative phase 2 trial, we recruited patients aged 18 years or older with inoperable stage III NSCLC without EGFR mutation or ALK rearrangement with an Eastern Cooperative Oncology Group performance status of 0-1, and who were affiliated with or a beneficiary of a social benefit system, with evaluable tumour or node lesions, preserved lung function, and who were amenable to curative-intent radiochemotherapy. Patients were randomly allocated using a central interactive web-response system in a non-masked method (1:1; minimisation method used [random factor of 0·8]; stratified by radiotherapy technique [intensity-modulated radiotherapy vs three-dimensional conformal radiotherapy] and by centre at which patients were treated) either to the experimental adaptive radiotherapy group A, in which only patients with positive residual metabolism on [18F]FDG-PET at 42 Gy received a boost radiotherapy (up to 74 Gy in 33 fractions), with all other patients receiving standard radiotherapy dosing (66 Gy in 33 fractions over 6·5 weeks), or to the standard radiotherapy group B (66 Gy in 33 fractions) over 6·5 weeks. All patients received two cycles of induction platinum-based chemotherapy cycles (paclitaxel 175 mg/m2 intravenously once every 3 weeks and carboplatin area under the curve [AUC]=6 once every 3 weeks, or cisplatin 80 mg/m2 intravenously once every 3 weeks and vinorelbine 30 mg/m2 intravenously on day 1 and 60 mg/m2 orally [or 30 mg/m2 intravenously] on day 8 once every 3 weeks). Then they concomitantly received radiochemotherapy with platinum-based chemotherapy (three cycles for 8 weeks, with once per week paclitaxel 40 mg/m2 intravenously and carboplatin AUC=2 or cisplatin 80 mg/m2 intravenously and vinorelbine 20 mg/m2 intravenously on day 1 and 40 mg/m2 orally (or 20 mg/m2 intravenously) on day 8 in 21-day cycles). The primary endpoint was the 15-month local control rate in the eligible patients who received at least one dose of concomitant radiochemotherapy. This RTEP7-IFCT-1402 trial is registered with ClinicalTrials.gov (NCT02473133), and is ongoing.METHODSIn this multicentre, randomised, controlled non-comparative phase 2 trial, we recruited patients aged 18 years or older with inoperable stage III NSCLC without EGFR mutation or ALK rearrangement with an Eastern Cooperative Oncology Group performance status of 0-1, and who were affiliated with or a beneficiary of a social benefit system, with evaluable tumour or node lesions, preserved lung function, and who were amenable to curative-intent radiochemotherapy. Patients were randomly allocated using a central interactive web-response system in a non-masked method (1:1; minimisation method used [random factor of 0·8]; stratified by radiotherapy technique [intensity-modulated radiotherapy vs three-dimensional conformal radiotherapy] and by centre at which patients were treated) either to the experimental adaptive radiotherapy group A, in which only patients with positive residual metabolism on [18F]FDG-PET at 42 Gy received a boost radiotherapy (up to 74 Gy in 33 fractions), with all other patients receiving standard radiotherapy dosing (66 Gy in 33 fractions over 6·5 weeks), or to the standard radiotherapy group B (66 Gy in 33 fractions) over 6·5 weeks. All patients received two cycles of induction platinum-based chemotherapy cycles (paclitaxel 175 mg/m2 intravenously once every 3 weeks and carboplatin area under the curve [AUC]=6 once every 3 weeks, or cisplatin 80 mg/m2 intravenously once every 3 weeks and vinorelbine 30 mg/m2 intravenously on day 1 and 60 mg/m2 orally [or 30 mg/m2 intravenously] on day 8 once every 3 weeks). Then they concomitantly received radiochemotherapy with platinum-based chemotherapy (three cycles for 8 weeks, with once per week paclitaxel 40 mg/m2 intravenously and carboplatin AUC=2 or cisplatin 80 mg/m2 intravenously and vinorelbine 20 mg/m2 intravenously on day 1 and 40 mg/m2 orally (or 20 mg/m2 intravenously) on day 8 in 21-day cycles). The primary endpoint was the 15-month local control rate in the eligible patients who received at least one dose of concomitant radiochemotherapy. This RTEP7-IFCT-1402 trial is registered with ClinicalTrials.gov (NCT02473133), and is ongoing.From Nov 12, 2015, to July 7, 2021, we randomly assigned 158 patients (47 [30%] women and 111 [70%] men) to either the boosted radiotherapy group A (81 [51%]) or to the standard radiotherapy group B (77 [49%)]. In group A, 80 (99%) patients received induction chemotherapy and 68 (84%) received radiochemotherapy, of whom 48 (71%) with residual uptake on [18F]FDG-PET after 42 Gy received a radiotherapy boost. In group B, all 77 patients received induction chemotherapy and 73 (95%) received radiochemotherapy. At the final analysis, the median follow-up for eligible patients who received radiochemotherapy (n=140) was 45·1 months (95% CI 39·3-48·3). The 15-month local control rate was 77·6% (95% CI 67·6-87·6%) in group A and 71·2% (95% CI 60·8-81·6%) in group B. Acute (within 90 days from radiochemotherapy initiation) grade 3-4 adverse events were observed in 20 (29%) of 68 patients in group A and 33 (45%) of 73 patients in group B, including serious adverse events in five (7%) patients in group A and ten (14%) patients in group B. The most common grade 3-4 adverse events were febrile neutropenia (seven [10%] of 68 in group A vs 16 [22%] of 73 in group B), and anaemia (five [7%] vs nine [12%]). In the acute phase, two deaths (3%) occurred in group B (one due to a septic shock related to chemotherapy, and the other due to haemotypsia not related to study treatment), and no deaths occurred in group A. After 90 days, one additional treatment-unrelated death occurred in group A and two deaths events occurred in group B (one radiation pneumonitis and one pneumonia unrelated to treatment).FINDINGSFrom Nov 12, 2015, to July 7, 2021, we randomly assigned 158 patients (47 [30%] women and 111 [70%] men) to either the boosted radiotherapy group A (81 [51%]) or to the standard radiotherapy group B (77 [49%)]. In group A, 80 (99%) patients received induction chemotherapy and 68 (84%) received radiochemotherapy, of whom 48 (71%) with residual uptake on [18F]FDG-PET after 42 Gy received a radiotherapy boost. In group B, all 77 patients received induction chemotherapy and 73 (95%) received radiochemotherapy. At the final analysis, the median follow-up for eligible patients who received radiochemotherapy (n=140) was 45·1 months (95% CI 39·3-48·3). The 15-month local control rate was 77·6% (95% CI 67·6-87·6%) in group A and 71·2% (95% CI 60·8-81·6%) in group B. Acute (within 90 days from radiochemotherapy initiation) grade 3-4 adverse events were observed in 20 (29%) of 68 patients in group A and 33 (45%) of 73 patients in group B, including serious adverse events in five (7%) patients in group A and ten (14%) patients in group B. The most common grade 3-4 adverse events were febrile neutropenia (seven [10%] of 68 in group A vs 16 [22%] of 73 in group B), and anaemia (five [7%] vs nine [12%]). In the acute phase, two deaths (3%) occurred in group B (one due to a septic shock related to chemotherapy, and the other due to haemotypsia not related to study treatment), and no deaths occurred in group A. After 90 days, one additional treatment-unrelated death occurred in group A and two deaths events occurred in group B (one radiation pneumonitis and one pneumonia unrelated to treatment).A thoracic radiotherapy boost, based on interim [18F]FDG-PET, led to a meaningful local control rate with no difference in adverse events between the two groups in organs at risk, in contrast with previous attempts at thoracic radiation intensification, warranting a randomised phase 3 evaluation of such [18F]FDG-PET-guided radiotherapy dose adaptation in patients with stage III NSCLC.INTERPRETATIONA thoracic radiotherapy boost, based on interim [18F]FDG-PET, led to a meaningful local control rate with no difference in adverse events between the two groups in organs at risk, in contrast with previous attempts at thoracic radiation intensification, warranting a randomised phase 3 evaluation of such [18F]FDG-PET-guided radiotherapy dose adaptation in patients with stage III NSCLC.Programme Hospitalier de Recherche Clinique National 2014.FUNDINGProgramme Hospitalier de Recherche Clinique National 2014.
Journal Article
MST1/Hippo promoter gene methylation predicts poor survival in patients with malignant pleural mesothelioma in the IFCT-GFPC-0701 MAPS Phase 3 trial
by
Margery, Jacques
,
Bergot, Emmanuel
,
Mazières, Julien
in
692/4028/67/1641
,
692/53/2422
,
Apoptosis
2019
Background
The Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS/NCT00651456) phase 3 trial demonstrated the superiority of bevacizumab plus pemetrexed–cisplatin triplet over chemotherapy alone in 448 malignant pleural mesothelioma (MPM) patients. Here, we evaluated the prognostic role of Hippo pathway gene promoter methylation.
Methods
Promoter methylations were assayed using methylation-specific polymerase chain reaction in samples from 223 MAPS patients, evaluating their prognostic value for overall survival (OS) and disease-free survival in univariate and multivariate analyses. MST1 inactivation effects on invasion, soft agar growth, apoptosis, proliferation, and YAP/TAZ activation were investigated in human mesothelial cell lines.
Results
STK4 (MST1) gene promoter methylation was detected in 19/223 patients tested (8.5%), predicting poorer OS in univariate and multivariate analyses (adjusted HR: 1.78, 95% CI (1.09–2.93),
p
= 0.022). Internal validation by bootstrap resampling supported this prognostic impact. MST1 inactivation reduced cellular basal apoptotic activity while increasing proliferation, invasion, and soft agar or in suspension growth, resulting in nuclear YAP accumulation, yet TAZ cytoplasmic retention in mesothelial cell lines. YAP silencing decreased invasion of MST1-depleted mesothelial cell lines.
Conclusions
MST1/hippo kinase expression loss is predictive of poor prognosis in MPM patients, leading to nuclear YAP accumulation and electing YAP as a putative target for therapeutic intervention in human MPM.
Journal Article
Circulating Tumor DNA as a Prognostic Determinant in Small Cell Lung Cancer Patients Receiving Atezolizumab
2020
Background: The IFCT-1603 trial evaluated atezolizumab in small cell lung cancer (SCLC). The purpose of the present study was to determine whether circulating tumor DNA (ctDNA), prospectively collected at treatment initiation, was associated with the prognosis of SCLC, and whether it identified patients who benefited from atezolizumab. Methods: 68 patients were included in this study: 46 patients were treated with atezolizumab and 22 with conventional chemotherapy. Circulating DNA was extracted from plasma and NGS (Next Generation Sequencing) looked for mutations in the TP53, RB1, NOTCH1, NOTCH2, and NOTCH3 genes. ctDNA was detectable when at least one somatic mutation was identified, and its relative abundance was quantified by the variant allele fraction (VAF) of the most represented mutation. Results: We found that 49/68 patients (70.6%) had detectable baseline ctDNA. The most frequently identified mutations were TP53 (32/49; 65.3%) and RB1 (25/49; 51.0%). Patients with detectable ctDNA had a significantly lower disease control rate at week 6 compared with patients with no detectable ctDNA, regardless of the nature of the treatment. Detection of ctDNA was associated with a poor OS prognosis. The detection of ctDNA at a relative abundance greater than the median value was significantly associated with poor overall survival (OS) and progression free survival (PFS). Interestingly, the benefit in overall survival (OS) associated with low ctDNA was more pronounced in patients treated with atezolizumab than in patients receiving chemotherapy. Among patients whose relative ctDNA abundance was below the median, those treated with atezolizumab tended to have higher OS than those in the chemotherapy arm. Conclusion: ctDNA is strongly associated with the prognosis of SCLC patients treated with second-line immunotherapy. Its analysis seems justified for future SCLC clinical trials.
Journal Article
Introduction
2021
« Notre maison brûle et nous regardons ailleurs, nous ne pourrons pas dire que nous ne savions pas. Prenons garde que le 21ème ne devienne pas pour les générations futures celui d’un crime de l’humanité contre la vie » Discours du Président français J. Chirac lors du Sommet de la Terre, Johannesburg 2002. [...]
Journal Article
Role of the YAP-1 Transcriptional Target cIAP2 in the Differential Susceptibility to Chemotherapy of Non-Small-Cell Lung Cancer (NSCLC) Patients with Tumor RASSF1A Gene Methylation from the Phase 3 IFCT-0002 Trial
by
Quoix, Elisabeth
,
Bergot, Emmanuel
,
Keller, Maureen
in
Apoptosis
,
Biochemistry, Molecular Biology
,
Biomarkers
2019
RASSF1 gene methylation predicts longer disease-free survival (DFS) and overall survival (OS) in patients with early-stage non-small-cell lung cancer treated using paclitaxel-based neo-adjuvant chemotherapy compared to patients receiving a gemcitabine-based regimen, according to the randomized Phase 3 IFCT (Intergroupe Francophone de Cancérologie Thoracique)-0002 trial. To better understand these results, this study used four human bronchial epithelial cell (HBEC) models (HBEC-3, HBEC-3-RasV12, A549, and H1299) and modulated the expression of RASSF1A or YAP-1. Wound-healing, invasion, proliferation and apoptosis assays were then carried out and the expression of YAP-1 transcriptional targets was quantified using a quantitative polymerase chain reaction. This study reports herein that gemcitabine synergizes with RASSF1A, silencing to increase the IAP-2 expression, which in turn not only interferes with cell proliferation but also promotes cell migration. This contributes to the aggressive behavior of RASSF1A-depleted cells, as confirmed by a combined knockdown of IAP-2 and RASSF1A. Conversely, paclitaxel does not increase the IAP-2 expression but limits the invasiveness of RASSF1A-depleted cells, presumably by rescuing microtubule stabilization. Overall, these data provide a functional insight that supports the prognostic value of RASSF1 gene methylation on survival of early-stage lung cancer patients receiving perioperative paclitaxel-based treatment compared to gemcitabine-based treatment, identifying IAP-2 as a novel biomarker indicative of YAP-1-mediated modulation of chemo-sensitivity in lung cancer.
Journal Article
Routine molecular profiling of cancer: results of a one-year nationwide program of the French Cooperative Thoracic Intergroup (IFCT) for advanced non-small cell lung cancer (NSCLC) patients
by
Debieuvre, Didier
,
Mazières, Julien
,
Beau-Faller, Michèle
in
Cancer
,
Human health and pathology
,
Life Sciences
2016
Background: The molecular profiling of patients with advanced non-small-cell lung cancer (NSCLC) for known oncogenic drivers is recommended during routine care. Nationally, however, the feasibility and effects on outcomes of this policy are unknown. We aimed to assess the characteristics, molecular profiles, and clinical outcomes of patients who were screened during a 1-year period by a nationwide programme funded by the French National Cancer Institute. Methods This study included patients with advanced NSCLC, who were routinely screened for EGFR mutations, ALK rearrangements, as well as HER2 (ERBB2), KRAS, BRAF, and PIK3CA mutations by 28 certified regional genetics centres in France. Patients were assessed consecutively during a 1-year period from April, 2012, to April, 2013. We measured the frequency of molecular alterations in the six routinely screened genes, the turnaround time in obtaining molecular results, and patients' clinical outcomes. This study is registered with ClinicalTrials.gov, number NCT01700582. Findings 18 679 molecular analyses of 17 664 patients with NSCLC were done (of patients with known data, median age was 64·5 years [range 18–98], 65% were men, 81% were smokers or former smokers, and 76% had adenocarcinoma). The median interval between the initiation of analysis and provision of the written report was 11 days (IQR 7–16). A genetic alteration was recorded in about 50% of the analyses; EGFR mutations were reported in 1947 (11%) of 17 706 analyses for which data were available, HER2 mutations in 98 (1%) of 11 723, KRAS mutations in 4894 (29%) of 17 001, BRAF mutations in 262 (2%) of 13 906, and PIK3CA mutations in 252 (2%) of 10 678; ALK rearrangements were reported in 388 (5%) of 8134 analyses. The median duration of follow-up at the time of analysis was 24·9 months (95% CI 24·8–25·0). The presence of a genetic alteration affected first-line treatment for 4176 (51%) of 8147 patients and was associated with a significant improvement in the proportion of patients achieving an overall response in first-line treatment (37% [95% CI 34·7–38·2] for presence of a genetic alteration vs 33% [29·5–35·6] for absence of a genetic alteration; p=0·03) and in second-line treatment (17% [15·0–18·8] vs 9% [6·7–11·9]; p<0·0001). Presence of a genetic alteration was also associated with improved first-line progression-free survival (10·0 months [95% CI 9·2–10·7] vs 7·1 months [6·1–7·9]; p<0·0001) and overall survival (16·5 months [15·0–18·3] vs 11·8 months [10·1–13·5]; p<0·0001) compared with absence of a genetic alteration. Interpretation Routine nationwide molecular profiling of patients with advanced NSCLC is feasible. The frequency of genetic alterations, acceptable turnaround times in obtaining analysis results, and the clinical advantage provided by detection of a genetic alteration suggest that this policy provides a clinical benefit.
Journal Article