Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Langston, Brennick J."
Sort by:
Draft genome sequence of the rubber tree Hevea brasiliensis
Background Hevea brasiliensis, a member of the Euphorbiaceae family, is the major commercial source of natural rubber (NR). NR is a latex polymer with high elasticity, flexibility, and resilience that has played a critical role in the world economy since 1876. Results Here, we report the draft genome sequence of H. brasiliensis . The assembly spans ~1.1 Gb of the estimated 2.15 Gb haploid genome. Overall, ~78% of the genome was identified as repetitive DNA. Gene prediction shows 68,955 gene models, of which 12.7% are unique to Hevea . Most of the key genes associated with rubber biosynthesis, rubberwood formation, disease resistance, and allergenicity have been identified. Conclusions The knowledge gained from this genome sequence will aid in the future development of high-yielding clones to keep up with the ever increasing need for natural rubber.
Increases in DNA fragmentation and induction of a senescence-specific nuclease are delayed during corolla senescence in ethylene-insensitive (etr1-1) transgenic petunias
The programmed senescence of flower petals has been shown to involve the fragmentation of nuclear DNA. Nuclear DNA fragmentation, as determined by the TUNEL assay, was detected in Petunia×hybrida corollas during both pollination-induced and age-related senescence. DNA fragmentation was detected late in the lifespan of the flower when corollas were wilting and producing ethylene. The induction of a 43 kDa nuclease (PhNUC1) correlated with increased DNA fragmentation. PhNUC1 is a glycoprotein with activity against DNA and RNA and a pH optimum of 7.5. EDTA was found to inhibit PhNUC1 activity, but the addition of Co2+ restored activity in the presence of the chelating agent. When total protein extracts from senescing petals were fractionated by differential centrifugation, PhNUC1 activity was detected in the nuclear but not the cytoplasmic fraction. Activity of PhNUC1 was induced in non-senescing corollas by treatment with ethylene. Delayed increases in PhNUC1 activity observed in ethylene-insensitive flowers (35S:etr1-1) suggest that ethylene modulates the timing of PhNUC1 induction, but that it is not an absolute requirement for its activation.
Draft genome sequence of the rubber tree Hevea brasiliensis
Hevea brasiliensis, a member of the Euphorbiaceae family, is the major commercial source of natural rubber (NR). NR is a latex polymer with high elasticity, flexibility, and resilience that has played a critical role in the world economy since 1876. Here, we report the draft genome sequence of H. brasiliensis. The assembly spans ~1.1 Gb of the estimated 2.15 Gb haploid genome. Overall, ~78% of the genome was identified as repetitive DNA. Gene prediction shows 68,955 gene models, of which 12.7% are unique to Hevea. Most of the key genes associated with rubber biosynthesis, rubberwood formation, disease resistance, and allergenicity have been identified. The knowledge gained from this genome sequence will aid in the future development of high-yielding clones to keep up with the ever increasing need for natural rubber.