Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
41
result(s) for
"Lantos, Csaba"
Sort by:
Agronomical Responses of Elite Winter Wheat (Triticum aestivum L.) Varieties in Phenotyping Experiments Under Continuous Water Withdrawal and Optimal Water Management in Greenhouses
2025
Drought stress is a major environmental constraint that significantly reduces wheat productivity worldwide. In this study, seventeen wheat genotypes were evaluated under well-watered and drought-stressed conditions across two consecutive years (2023–2024) in a controlled greenhouse experiment. Twenty morphological and agronomic traits were recorded, and their responses to prolonged water limitation were assessed using multivariate statistical methods, including three-way ANOVA, principal component analysis (PCA), and cluster analysis. Drought stress significantly decreased all traits except the harvest index (HI), with the most severe reductions observed in traits related to secondary spikes (e.g., grain weight reduced by 95%). The ANOVA results confirmed significant genotype × treatment (G × T) interactions for key agronomic traits, with the strongest effect observed for total grain weight (F = 7064.30, p < 0.001). A PCA reduced the 20 original variables to five principal components, explaining 87.2% of the total variance. These components reflected distinct trait groups associated with productivity, spike architecture, and development in phenology. Cluster analysis based on PCA scores grouped genotypes into three clusters with contrasting drought response profiles. A yield-based evaluation confirmed the cluster structure, distinguishing genotypes with a stable performance (average yield loss ~58%) from highly sensitive ones (~70% loss). Overall, the findings demonstrate that drought tolerance in wheat is governed by complex trait interactions. Integrating a trait-based multivariate analysis with a yield stability assessment enables the identification of genotypes with superior adaptation to water-limited environments, providing an excellent genotype background for future breeding efforts.
Journal Article
Temporal Changes of Leaf Spectral Properties and Rapid Chlorophyll—A Fluorescence under Natural Cold Stress in Rice Seedlings
2023
Nowadays, hyperspectral remote sensing data are widely used in nutrient management, crop yield forecasting and stress monitoring. These data can be acquired with satellites, drones and handheld spectrometers. In this research, handheld spectrometer data were validated by chlorophyll-a fluorescence measurements under natural cold stress. The performance of 16 rice cultivars with different origins and tolerances was monitored in the seedling stage. The studies were carried out under field conditions across two seasons to simulate different temperature regimes. Twenty-four spectral indices and eleven rapid chlorophyll-a fluorescence parameters were compared with albino plants. We identified which wavelengths are affected by low temperatures. Furthermore, the differences between genotypes were characterized by certain well-known and two newly developed (AAR and RAR) indices based on the spectral difference between the genotype and albino plant. The absorbance, reflectance and transmittance differences from the control are suitable for the discrimination of tolerant-sensitive varieties, especially based on their shape, peak and shifting distance. The following wavelengths are capable of determining the tolerant varieties, namely 548–553 nm, 667–670 nm, 687–688 nm and 800–950 nm in case of absorbance; above 700 nm for reflectance; and the whole spectrum (400–1100 nm) for transmittance.
Journal Article
Comparative analysis of in vitro anther- and isolated microspore culture in hexaploid Triticale (X Triticosecale Wittmack) for androgenic parameters
by
Pauk, János
,
Bóna, Lajos
,
Boda, Krisztina
in
Agronomy. Soil science and plant productions
,
Albinism
,
albino
2014
Two haploid induction media (190-0 and W14mi) were tested in isolated microspore culture of two triticale (X Triticosecale Wittmack) genotypes. The W14mi medium proved superior for the production of green plantlets in both genotypes. This basic medium (W14) was used to compare two doubled haploid production methods (isolated microspore culture and anther culture) with the same genotypes. The induction of androgenesis was more effective in isolated microspore culture than in anther culture. The number of embryo-like structures was 9.2 times higher in microspore culture (511.0/100 anthers) compared to anther culture (55.5/100 anthers) and the number of regenerant plantlets was also 3.4 times higher (anther culture—20.15/100 anthers; isolated microspore culture—67.6/100 anthers). However, the regenerant plantlets from isolated microspore culture were mainly albinos while predominantly green plantlets were regenerated from anther culture. The production of green plantlets from anther culture (16.8/100 anthers) was 2.9 times higher than from isolated microspore culture (5.8/100 anthers). The efficiency of anther culture was tested with eight winter triticale genotypes. The phenomenon of albinism did not hinder the green plant production in anther culture. Mean green plantlet production was 10.87/100 anthers. This value was two times higher than the number of albinos (5.01/100 anthers) and higher than previously published reports. The anther culture protocol described in this study is an efficient tool for the production of microspore-derived green plantlets in triticale.
Journal Article
Comparative Analyses of Green Plantlet Regeneration in Barley (Hordeum vulgare L.) Anther Culture
2024
The efficient doubled haploid (DH) plant production methods play a key role in accelerating the breeding of new varieties and hybrids in cultivated plants. Consequently, DH plant production methods are continuously improving for barley (Hordeum vulgare L.) breeding and research programs. Two plant regeneration (FHGR and K4NB) and three rooting media (MSr, N6I and ½N6I + Ca) were compared with four F1 barley cross-combinations to clarify the effect of medium on the regeneration of green and albino plantlets and acclimatization. The plant regeneration efficiency was higher using K4NB medium (74.53 green plantlets/100 anthers and 30.85 albino/100 anthers) compared to FHGR (55.77 green plantlets/100anthers and 21.32 albino/100 anthers). The percentage of acclimatization was highest when the K4NB regeneration medium was combined with the MSr rooting medium. Altogether, 61.83% of the anther culture-derived plantlets of 8 cross-combinations acclimatized to the greenhouse conditions, and 1403 acclimatized plantlets were produced from the F1 cross-combinations. Haploid (22.52%), diploid (69.37%) and tetraploid (8.11%) plantlets were identified among the 111 tested green plantlets by flow cytometric analyses. The tetraploid lines can be explored to offer new scopes for future barley research and breeding directions. Nearly one thousand DH plants have been integrated into our barley breeding program.
Journal Article
Improvement of Anther Culture to integrate Doubled Haploid Technology in Temperate Rice (Oryza sativa L.) Breeding
2022
Doubled haploid (DH) plant production, such as anther culture (AC), is an effective tool used in modern rice breeding programs. The improved efficient protocols applied can shorten the process of breeding. The effect of combinations of plant growth regulators (2.5 mg/L NAA, 1 mg/L 2,4-D and 0.5 mg/L kinetin; 2 mg/L 2,4-D and 0.5 mg/L BAP) in the induction medium were compared in AC for five rice breeding materials and combinations. Induction of calli ranged from 264.6 ± 67.07 to 468.8 ± 123.2 calli/100 anthers in AC of rice genotypes. Two basal media (MS and N6) and two combinations of growth regulators (1 mg/L NAA, 1 mg/L BAP and 1 mg/L kinetin; 1.5 mg/L BAP, 0.5 mg/L NAA and 0.5 mg/L kinetin) were used as regeneration media. The in vitro green plant production was the highest with the application of the N6NDK induction medium (NAA, 2,4-D and kinetin) and the MS-based regeneration medium (1 mg/L NAA, 1 mg/BAP and 1 mg/L kinetin) in anther culture of the ‘1009’ genotype (95.2 green plantlets/100 anthers). The mean of five genotypes was 24.48 green plantlets/100 anthers for the best treatment. Flow cytometric analyses conducted identified the microspore origin of the haploid calli produced in AC, while the uniformity of spontaneous DH plants was checked in the DH1 and DH2 generations. Spontaneous chromosome doubling ranged from 38.1% to 57.9% (mean 42.1%), depending on the breeding source. The generated and selected DH lines were tested in micro- and small-plot field experiments to identify promising lines for a pedigree breeding program. The improved AC method was integrated in a Hungarian temperate rice pedigree breeding program.
Journal Article
Development of In Vitro Anther Culture for Doubled Haploid Plant Production in Indica Rice (Oryza sativa L.) Genotypes
2023
Anther culture is an efficient biotechnological tool in modern plant breeding programs to produce new varieties and parental lines in hybrid seed productions. However, some bottlenecks—low induction rate, genotype dependency, albinism—restrict the widespread utilization of in vitro anther culture in rice breeding, especially in Oryza sativa ssp. indica (indica) genotypes, while an improved efficient protocol can shorten the process of breeding. Three different induction media (N6NDK, N6NDZ, Ali-1) and four plant regeneration media (mMSNBK1, MSNBK3, MSNBKZ1, MSNBKZ2) were tested with five indica rice genotypes to increase the efficiency of in vitro androgenesis (number of calli and regenerated green plantlets). The production of calli was more efficient on the N6NDK medium with an average 88.26 calli/100 anthers and N6NDZ medium with an average of 103.88 calli/100 anthers as compared to Ali-1 with an average of 6.96 calli/100 anthers. The production of green plantlets was greater when calli was produced on N6NDK medium (2.15 green plantlets/100 anthers) compared when produced on to N6NDZ medium (1.18 green plantlets/100 anthers). Highest green plantlets production (4.7 green plantlets/100 anthers) was achieved when mMSNBK1 plant regeneration medium was used on calli produced utilizing N6NDK induction medium. In the best overall treatment (N6NDK induction medium and mMSNBK1 plant regeneration medium), four tested genotypes produced green plantlets. However, the genotype influenced the efficiency, and the green plantlets production ranged from 0.4 green plantlets/100 anthers to 8.4 green plantlets/100 anthers. The ploidy level of 106 acclimatized indica rice plantlets were characterized with flow cytometric analyses to calculate the percentage of spontaneous chromosome doubling. Altogether, 48 haploid-, 55 diploid-, 2 tetraploid- and 1 mixoploid plantlets were identified among the regenerant plantlets, and the spontaneous chromosome doubling percentage was 51.89%. Utilization of DH plants have been integrated as a routine method in the Hungarian rice breeding program. The tetraploid lines can be explored for their potential to offer new scopes for rice research and breeding directions in the future.
Journal Article
Differential influence of QTL linked to Fusarium head blight, Fusarium-damaged kernel, deoxynivalenol contents and associated morphological traits in a Frontana-derived wheat population
by
Csaba, Lantos
,
Szabolcs, Lehoczki-Krsjak
,
Mónika, Varga
in
Accumulation
,
Agronomy. Soil science and plant productions
,
Biological and medical sciences
2014
The genetic background of Fusarium head blight (FHB) resistance in the moderately resistant wheat variety Frontana was investigated in the GK Mini Manó/Frontana DH population (n = 168). The plant material was evaluated across seven epidemic environments for FHB, Fusarium-damaged kernel (FDK) and deoxynivalenol (DON) contents caused by two Fusarium species (F. culmorum and F. graminearum). The effects of phenotypic traits such as plant height and heading date were also considered in the experiments. In the population, 527 polymorph markers (DArT, SSR) within a distance of 1,381 cM distance were mapped. The quantitative trait locus/loci (QTL) on chromosomes 4A and 4B demonstrated a significant linkage only with FHB, while QTL on chromosomes 3A, 4B, 7A and 7B were linked to DON accumulation alone. Regions determining all the investigated Fusarium resistance traits were identified on chromosomes 1B, 2D, 3B, 5A, 5B and 6B. The markers in these regions are of the greatest significance from the aspect of resistance breeding. Our results indicate that the genetic background of resistance against FHB, FDK and DON accumulation can differ, and all these traits should be taken under consideration during resistance tests. Moreover, this is the first report on the mapping of Frontana-derived QTL that influence DON accumulation, which is important since the level of DON contamination determines the actions of the food and feed industries. Selection should therefore also focus on this trait by using molecular markers linked to DON content.
Journal Article
Induction of Triticale (×Triticosecale Wittmack) In Vitro Androgenesis in Anther Cultures of F1 Hybrid Combinations, Varieties and Homogeneity Testing of Offspring Generation
2023
In cereal breeding, in vitro androgenesis methods are frequently applied to achieve doubled haploid (DH) plants. The aim of this study was to determine the effects of genotype (three registered varieties and eight F1 crossing combinations) and induction medium (W14mf and P4mf) on anther cultures (ACs) of triticale (×Triticosecale Wittmack). Androgenesis was induced in the treatment of each tested genotype, and the genotype significantly influenced the efficiency of AC, including in embryo-like structures (ELSs), albinos, green plantlets, and transplanted plantlets. The utilized medium also had a significant effect on the number of ELSs, albinos, and transplanted plantlets. Both media were suitable for AC in triticale DH plant production. The efficiency of AC was higher when using the P4mf medium (103.7 ELS/100 anthers, 19.7 green plantlets/100 anthers) than when using the W14mf medium (90.0 ELS/100 anthers, 17.0 green plantlets/100 anthers). However, the green plantlet regeneration efficiency of microspore-derived structures was 18.0% when using the W14mf medium, while this value was 15.9% in the case of ELSs induced with the P4mf medium. After nursery seed evaluation and propagation (DH1), the genetic homogeneity of the offspring generation (DH2) was tested using a molecular genetic method. Most of the tested DH lines showed homogeneity and were progressed into a breeding program after agronomic selection. Some DH lines showed inhomogeneity, which could be explained by the outcross inclination of triticale. We would like to call breeders’ attention to the outcross character of triticale and emphasize the vigilant propagation and maintenance of the triticale DH lines in breeding programs. Due to the outcross nature of triticale, even in self-pollinated genotypes, breeders should focus on careful maintenance, along with isolation in the case of line propagations, in triticale breeding programs.
Journal Article
Investigation of a Perspective Urban Tree Species, Ginkgo biloba L., by Scientific Analysis of Historical Old Specimens
by
Bibi, Dina
,
Horotán, Katalin
,
Török, Katalin
in
Acclimatization (Plants)
,
Adaptability
,
Air pollution
2024
In this study, we examined over 200-year-old Ginkgo biloba L. specimens under different environmental conditions. The overall aim was to explore which factors influence their vitality and general fitness in urban environments and thus their ability to tolerate stressful habitats. In order to determine this, we used a number of different methods, including histological examinations (stomatal density and size) and physiological measurements (peroxidase enzyme activity), as well as assessing the air pollution tolerance index (APTI). The investigation of the genetic relationships between individuals was performed using flow cytometry and miRNA marker methods. The genetic tests revealed that all individuals are diploid, whereas the lus-miR168 and lus-miR408 markers indicated a kinship relation between them. These results show that the effect of different habitat characteristics can be detected through morphological and physiological responses, thus indicating relatively higher stress values for all studied individuals. A significant correlation can be found between the level of adaptability and the relatedness of the examined individuals. These results suggest that Ginkgo biloba L. is well adapted to an environment with increased stress factors and therefore suitable for use in urban areas.
Journal Article
Alteration of Carbohydrate Metabolism in Fusarium Infected Wheat Kernels Treated with Fungicides and Its Relation to Baking Technological Parameters and Deoxynivalenol Contamination
2023
Changes of water-soluble carbohydrate (WSC) content such as fructose, glucose, sucrose, maltose, nystose, raffinose, stachyose and fructan were analyzed in wheat kernels in Fusarium epidemic and non-epidemic seasons. In both season types, eight commercial fungicides were applied and three wheat varieties with differing Fusarium resistance were tested. In the epidemic year, the average total amount of WSC was above 1.6% which was 2 times higher than in the non-epidemic year (0.7%). Sucrose, maltose, raffinose and fructan components determined the increased WSC value, but the most substantial change was observed in maltose content where its average amount was 28 times higher in the epidemic year. Fungicide application also significantly increased all the carbohydrate components except maltose, where significant reduction was observed. WSC components had strong correlation with several farinograph or extensograph parameters, but only the maltose content showed positive strong correlation (r = 0.9) with deoxynivalenol (DON) toxin that was highly affected by the applied fungicide. The changes of WSC indicate altered carbohydrate synthesis along with abnormal degradation processes and thus have impaction on the baking features. It seems that the sugar metabolism interacts with DON synthesis and the results give important additional information to the altered metabolism of the attacked plant.
Journal Article