Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
10 result(s) for "Lanzone, Michael J."
Sort by:
Resource selection functions based on hierarchical generalized additive models provide new insights into individual animal variation and species distributions
Habitat selection studies are designed to generate predictions of species distributions or inference regarding general habitat associations and individual variation in habitat use. Such studies frequently involve either individually indexed locations gathered across limited spatial extents and analyzed using resource selection functions (RSFs) or spatially extensive locational data without individual resolution typically analyzed using species distribution models. Both analytical methodologies have certain desirable features, but analyses that combine individual‐ and population‐level inference with flexible non‐linear functions may provide improved predictions while accounting for individual variation. Here, we describe how RSFs can be fit using hierarchical generalized additive models (HGAMs) using widely available software, providing a means to explore individual variation in habitat associations and to generate species distribution maps. We used GPS tracking data from golden eagles Aquila chrysaetos from across eastern North America with four environmental predictors to generate monthly distribution models. We considered three model structures that assumed different amounts of individual variation in the functional relationship between predictors and habitat use and used k‐fold cross‐validation to compare model performance. Models accounting for individual variability in shape and smoothness of functional responses performed best. Eagles exhibited the least amount of individual variation in response to land cover variables during winter months, with most individuals more closely adhering to the population‐level trend. During the summer months, eagles exhibited more substantial individual variation in shape and smoothness of the functional relationships, suggesting some need to account for individual variation in eagle habitat use for both inferential and predictive purposes, during this time of year. Because they allow users to blend flexible functions with random effects structures and are well‐supported by a variety of software platforms, we believe that HGAMs provide a useful addition to the suite of analyses used for modeling habitat associations or predicting species distributions.
Turbulence explains the accelerations of an eagle in natural flight
Turbulent winds and gusts fluctuate on a wide range of timescales from milliseconds to minutes and longer, a range that overlaps the timescales of avian flight behavior, yet the importance of turbulence to avian behavior is unclear. By combining wind speed data with the measured accelerations of a golden eagle (Aquila chrysaetos) flying in the wild, we find evidence in favor of a linear relationship between the eagle’s accelerations and atmospheric turbulence for timescales between about 1/2 and 10 s. These timescales are comparable to those of typical eagle behaviors, corresponding to between about 1 and 25 wingbeats, and to those of turbulent gusts both larger than the eagle’s wingspan and smaller than large-scale atmospheric phenomena such as convection cells. The eagle’s accelerations exhibit power spectra and intermittent activity characteristic of turbulence and increase in proportion to the turbulence intensity. Intermittency results in accelerations that are occasionally several times stronger than gravity, which the eagle works against to stay aloft. These imprints of turbulence on the bird’s movements need to be further explored to understand the energetics of birds and other volant life-forms, to improve our own methods of flying through ceaselessly turbulent environments, and to engage airborne wildlife as distributed probes of the changing conditions in the atmosphere.
Use of Upland and Riparian Areas by Wintering Bald Eagles and Implications for Wind Energy
Weather can shape movements of animals and alter their exposure to anthropogenic threats. Bald eagles (Haliaeetus leucocephalus) are increasingly at risk from collision with turbines used in onshore wind energy generation. In the midwestern United States, development of this energy source typically occurs in upland areas that bald eagles use only intermittently. Our objective was to determine the factors that cause wintering bald eagles to occupy riparian areas and riskier, upland areas. We tracked 20 bald eagles using telemetry in the Upper Midwest (MN, IA, MO, WI, IL, USA) during winter 2014–2015 and 2015–2016 and evaluated habitat use by eagles in response to variation in weather and time of year. Eagles used riparian areas more when wind speed and atmospheric pressure were low. Exclusive use of uplands was more frequent during weather systems with low pressure and high humidity and after long periods of cold weather. There was a non-linear response to time of year (measured by days before migration) in the frequency of exclusive use of uplands or riparian areas. Probability of exclusive use of either landscape was generally constant within 95 days prior to migration. The probability of use of riparian areas, however, was markedly less during dates >100 days before migration. Our results suggest that eagles are most likely to be exposed to wind energy developments located in upland areas during low pressure systems, after long periods of cold weather, and several months before the onset of spring migration. This information helps to better understand the factors influencing bald eagle habitat use in winter and will be useful to managers and developers wishing to establish effective strategies to avoid, minimize, and mitigate take, and to survey for mortalities at wind energy developments.
Summer and winter space use and home range characteristics of Golden Eagles (Aquila chrysaetos) in eastern North America
Movement behavior and its relationship to habitat provide critical information toward understanding the effects of changing environments on birds. The eastern North American population of Golden Eagles (Aquila chrysaetos) is a genetically distinct and small population of conservation concern. To evaluate the potential responses of this population to changing landscapes, we calculated the home range and core area sizes of 52 eagles of 6 age–sex classes during the summer and winter seasons. Variability in range size was related to variation in topography and open cover, and to age and sex. In summer, eagle ranges that were smaller had higher proportions of ridge tops and open cover and had greater topographic roughness than did larger ranges. In winter, smaller ranges had higher proportions of ridge tops, hillsides and cliffs, and open cover than did larger ranges. All age and sex classes responded similarly to topography and open cover in both seasons. Not surprisingly, adult eagles occupied the smallest ranges in both seasons. Young birds used larger ranges than adults, and subadults in summer used the largest ranges (>9,000 km2). Eastern adult home ranges in summer were 2–10 times larger than those reported for other populations in any season. Golden Eagles in eastern North America may need to compensate for generally lower-quality habitat in the region by using larger ranges that support access to adequate quantities of resources (prey, updrafts, and nesting, perching, and roosting sites) associated with open cover and diverse topography. Our results suggest that climate change–induced afforestation on the breeding grounds and ongoing land cover change from timber harvest and energy development on the wintering grounds may affect the amount of suitable habitat for Golden Eagles in eastern North America.
Flight response to spatial and temporal correlates informs risk from wind turbines to the California Condor
Wind power is a fast-growing energy resource, but wind turbines can kill volant wildlife, and the flight behavior of obligate soaring birds can place them at risk of collision with these structures. We analyzed altitudinal data from GPS telemetry of critically endangered California Condors (Gymnogyps californianus) to assess the circumstances under which their flight behavior may place them at risk from collision with wind turbines. Condor flight behavior was strongly influenced by topography and land cover, and birds flew at lower altitudes and closer to the rotor-swept zone of wind turbines when over ridgelines and steep slopes and over forested and grassland cover types. Condor flight behavior was temporally predictable, and birds flew lower and closer to the rotor-swept zone during early morning and evening hours and during the winter months, when thermal updrafts were weakest. Although condors only occasionally flew at altitudes that placed them in the rotor-swept zone of turbines, they regularly flew near or within wind resource areas preferred by energy developers. Practitioners aiming to mitigate collision risk to this and other soaring bird species of conservation concern can consider the manner in which flight behavior varies temporally and in response to areas of high topographic relief and proximity to nocturnal roosting sites. By contrast, collision risk to large soaring birds from turbines should be relatively lower over flatter and less rugged areas and in habitat used during daytime soaring.
Landscape-scale distribution and density of raptor populations wintering in anthropogenic-dominated desert landscapes
Anthropogenic development has great potential to affect fragile desert environments. Large-scale development of renewable energy infrastructure is planned for many desert ecosystems. Development plans should account for anthropogenic effects to distributions and abundance of rare or sensitive wildlife; however, baseline data on abundance and distribution of such wildlife are often lacking. We surveyed for predatory birds in the Sonoran and Mojave Deserts of southern California, USA, in an area designated for protection under the “Desert Renewable Energy Conservation Plan”, to determine how these birds are distributed across the landscape and how this distribution is affected by existing development. We developed species-specific models of resight probability to adjust estimates of abundance and density of each individual common species. Second, we developed combined-species models of resight probability for common and rare species so that we could make use of sparse data on the latter. We determined that many common species, such as red-tailed hawks, loggerhead shrikes, and especially common ravens, are associated with human development and likely subsidized by human activity. Species-specific and combined-species models of resight probability performed similarly, although the former model type provided higher quality information. Comparing abundance estimates with past surveys in the Mojave Desert suggests numbers of predatory birds associated with human development have increased while other sensitive species not associated with development have decreased. This approach gave us information beyond what we would have collected by focusing either on common or rare species, thus it provides a low-cost framework for others conducting surveys in similar desert environments outside of California.
Post-fledging movements and habitat associations of White-tailed Sea Eagles (Haliaeetus albicilla) in Central Asia
Behavior of young birds can have important consequences for population dynamics. We investigated the autumnal post-fledging movements of 3 White-tailed Sea Eagles (Haliaeetus albicilla) hatched in Kazakhstan. All 3 eagles traveled south, flying on average 25–108 km/d. Movement was nonrandom, with eagles generally traveling near mosaics of forest, open areas, and water, and rarely using areas with little vegetation. As the first study of movements of White-tailed Sea Eagles in arid Central Asia, this study provides insight into potential limiting factors and how these birds interact with their environment during long-distance movements.
Post-fledging movements and habitat associations of White-tailed Sea Eagles in Central Asia/Movimientos posemancipacion y asociaciones de habitat del aguila Haliaeetus albicilla en Asia central
Behavior of young birds can have important consequences for population dynamics. We investigated the autumnal post-fledging movements of 3 White-tailed Sea Eagles (Haliaeetus albicilla) hatched in Kazakhstan. All 3 eagles traveled south, flying on average 25-108 km/d. Movement was nonrandom, with eagles generally traveling near mosaics of forest, open areas, and water, and rarely using areas with little vegetation. As the first study of movements of White-tailed Sea Eagles in arid Central Asia, this study provides insight into potential limiting factors and how these birds interact with their environment during long-distance movements. Received 7 April 2017. Accepted 30 August 2017. Key words: habitat associations, hatch-year birds, Kazakhstan, long-distance movements, telemetry. El comportamiento de las aves jovenes puede tener consecuencias importantes en dinamicas poblacionalcs. Investigamos los movimientos posemancipaci[eth]n otonal de tres aguilas Haliaeetus albicilla que eclosionaron en Kazajistan. Todas las aguilas volaron hacia el sur, volando entre 25-108 km/d. Estos movimientos fueron no-aleatorios, en los que las aguilas generalmente viajaban cerca de mosaicos dc bosque, areas abiertas y agua, y raramente usando areas con poca vegetation. Como primer estudio de los movimientos de estas aguilas en la arida region central de Asia, este estudio provee ideas en los posibles factores limitantes y como estas aves interactuan con su ambiente durante movimientos dc larga distancia. Palabras clave: asociaciones de habitat, aves del primer ano, Kazajistan, movimientos de larga distancia, telemetria.
Intermittent turbulent gusts lift eagles
Turbulence grounds aircraft and combating it in flight requires energy, yet volant wildlife fly effortlessly even on windy days. The nature of the interactions between soaring birds and transient turbulent gusts is not clear, especially when compared with our understanding of flight in larger and steadier airflows during thermal or dynamic soaring. We show that soaring golden eagles (Aquila chrysaetos) experienced short upward accelerations indicative of preferential engagement with strong and intermittent turbulent updrafts. The vertical accelerations reflect changes in lift that were as large as 25 standard deviations from the mean, or more than three times the acceleration of gravity, and so large as not to be consistent with gust mitigation or avoidance. These extreme events occurred in short bursts that mimic movement with turbulent vortices. The burst statistics and their symmetries approach those of turbulence toward longer timescales. On the shortest timescales, the bursts break the symmetry of small-scale turbulence in favor of upward accelerations that are more intermittent than turbulence. We introduce a simple nonlinear model that predicts the scale at which symmetry breaks and the stronger intermittency on the smaller scales. These findings suggest a ratcheting mechanism on turbulent gusts and constitute the first quantitative evidence in favor of turbulent gust harvesting by wildlife. An implication is that turbulence is so strong and pervasive as to make unsteady and nonlinear aerodynamics an intrinsic and beneficial aspect of both flapping and soaring flight in the atmospheric boundary layer - one that we need to incorporate in our understanding of the energetics of flight.
Stable hydrogen isotopes identify leapfrog migration, degree of connectivity, and summer distribution of Golden Eagles in eastern North America
Knowledge of the distribution and movements of populations of migratory birds is useful for the effective conservation and management of biodiversity. However, such information is often unavailable because of the difficulty of tracking sufficient numbers of individuals. We used more easily obtained feather stable hydrogen isotope ratios (δ2H) to predict the summer grounds of the small, threatened, and migratory population of Golden Eagles (Aquila chrysaetos) in eastern North America. We then identified summer locations and the extent of migratory connectivity for this population. We collected δ2H (δ2Hf), stable carbon isotope (δ13C), and stable nitrogen isotope (δ15N) data from the body feathers of 47 juvenile, subadult, and adult Golden Eagles. Values of δ13C and δ15N suggested that all but 2 birds obtained food from terrestrial-based food webs and therefore that δ2H data were appropriate for inferring the geographic region of molt for the majority of birds. There was relatively large interfeather variation in the δ2H values of subadults vs. adults, suggesting that these groups molted at different times and places. The most negative δ2Hf values from birds with known summering grounds exhibited (1) a negative correlation with their summering latitude, and (2) a positive correlation with amount-weighted δ2H values of May–August precipitation at the summer location. These data validate the use of δ2Hf values for inferring the summer locations of Golden Eagles of unknown origin. Likelihood-of-origin maps derived from δ2Hf values revealed that (1) the majority of birds spent the breeding season in central Québec and Labrador, and (2) birds that wintered at southern latitudes, from approximately northern Alabama to southwestern Virginia, migrated about twice the distance of birds that wintered at northern latitudes, from Pennsylvania to New York. We observed a positive relationship between δ2Hf values and the latitude of the wintering location, which, along with the likelihood-of-origin maps, revealed moderate patterns of leapfrog migration and migratory connectivity.