Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
182
result(s) for
"Largaespada, David A"
Sort by:
CRISPR/Cas9 library screening for drug target discovery
by
Kurata, Morito
,
Moriarity, Branden S
,
Largaespada, David A
in
Cell survival
,
CRISPR
,
Drug development
2018
CRISPR/Cas9-based tools have rapidly developed in recent years. These include CRISPR-based gene activation (CRISPRa) or inhibition (CRISPRi), for which there are libraries. CRISPR libraries for loss of function have been widely used to identify new biological mechanisms, such as drug resistance and cell survival signals. CRISPRa is highly useful in screening for gain of functions, and CRISPRi is a more powerful tool than RNA interference (RNAi) libraries in screening for loss of functions. Positive selection using a CRISPR library can detect survival cells with specific conditions, such as drug treatment, and it can easily clarify drug resistance mechanisms. Negative selection is capable of detecting dead or slow-growing cells efficiently, and it can identify survival-essential genes, which can be promising candidates for molecularly targeted drugs. In addition, negative selection can be applied for synthetic lethality interactions, where the perturbation of both genes simultaneously results in the loss of viability, but that of either gene alone does not affect viability. This mechanism is highly important to identifying the optimal combination of molecularly targeted drugs. Survival-co-essential genes in cancer cells can be identified using new methods, such as the paired guide RNA system and in combination with single-cell RNA sequencing techniques. These efficient methods can clarify interesting biological mechanisms and suggest candidates for molecularly targeted drugs. This review identifies what types of screenings were performed and suggests ideas for the next CRISPR screenings to develop new drugs.
Journal Article
RAD-TGTs: high-throughput measurement of cellular mechanotype via rupture and delivery of DNA tension probes
by
Odde, David J.
,
Shamsan, Ghaidan A.
,
Anderson, Sarah M.
in
13/31
,
631/1647/1407/1492
,
631/1647/1407/2163
2023
Mechanical forces drive critical cellular processes that are reflected in mechanical phenotypes, or mechanotypes, of cells and their microenvironment. We present here “Rupture And Deliver” Tension Gauge Tethers (RAD-TGTs) in which flow cytometry is used to record the mechanical history of thousands of cells exerting forces on their surroundings via their propensity to rupture immobilized DNA duplex tension probes. We demonstrate that RAD-TGTs recapitulate prior DNA tension probe studies while also yielding a gain of fluorescence in the force-generating cell that is detectable by flow cytometry. Furthermore, the rupture propensity is altered following disruption of the cytoskeleton using drugs or CRISPR-knockout of mechanosensing proteins. Importantly, RAD-TGTs can differentiate distinct mechanotypes among mixed populations of cells. We also establish oligo rupture and delivery can be measured via DNA sequencing. RAD-TGTs provide a facile and powerful assay to enable high-throughput mechanotype profiling, which could find various applications, for example, in combination with CRISPR screens and -omics analysis.
Mechanical forces drive critical cellular processes, but methods to study such cellular forces are typically low-throughput. Here the authors present a method using “Rupture And Deliver” Tension Gauge Tethers, where flow cytometry or sequencing can be used to record the mechanical history of thousands of individual cells.
Journal Article
Multiplatform molecular profiling uncovers two subgroups of malignant peripheral nerve sheath tumors with distinct therapeutic vulnerabilities
2023
Malignant peripheral nerve sheath tumor (MPNST) is a highly aggressive sarcoma, and a lethal neurofibromatosis type 1-related malignancy, with little progress made on treatment strategies. Here, we apply a multiplatform integrated molecular analysis on 108 tumors spanning the spectrum of peripheral nerve sheath tumors to identify candidate drivers of MPNST that can serve as therapeutic targets. Unsupervised analyses of methylome and transcriptome profiles identify two distinct subgroups of MPNSTs with unique targetable oncogenic programs. We establish two subgroups of MPNSTs: SHH pathway activation in MPNST-G1 and WNT/ß-catenin/CCND1 pathway activation in MPNST-G2. Single nuclei RNA sequencing characterizes the complex cellular architecture and demonstrate that malignant cells from MPNST-G1 and MPNST-G2 have neural crest-like and Schwann cell precursor-like cell characteristics, respectively. Further, in pre-clinical models of MPNST we confirm that inhibiting SHH pathway in MPNST-G1 prevent growth and malignant progression, providing the rational for investigating these treatments in clinical trials.
Malignant peripheral nerve sheath tumours are an aggressive form of sarcoma, with limited treatment options. Here, the authors utilise DNA methylation and transcriptomic data to identify two subtypes of tumours with potential therapeutic vulnerabilities.
Journal Article
Flow Assisted Mutation Enrichment (FAME): A highly efficacious and efficient method to enrich Double Knockouts (DKO) after gene editing
by
Largaespada, David A.
,
Bowen, Sara
,
Li, Ming V.
in
Automation
,
Biology
,
Biology and Life Sciences
2021
Gene editing has become an essential tool for interrogation of gene function in biomedical research and is also a promising approach for gene therapy. Despite recent progresses, the gene-editing procedure is still a tedious process involving manually isolating large number of single cell colonies to screen for desired mutations. For diploid eukaryotic cells, there is the additional challenge to inactivate both alleles for genes-of-interest, i.e., generating double knockouts (DKOs), for the desired phenotypes or therapeutic effects. In this report, we present a novel method based on Fluorescence Assisted Cell Sorting (FACS) to enrich for DKO cells, using a cell surface marker β2-microglobulin (B2M) as a basis for negative selection. This method significantly increased percentage of DKOs in isolated cells after gene editing, and in the meantime, significantly improve the efficiency of workflow by automating colony isolation. It would greatly facilitate future biomedical research including potential gene/cell therapies.
Journal Article
Forward genetic screen for malignant peripheral nerve sheath tumor formation identifies new genes and pathways driving tumorigenesis
2013
Eric Rahrmann and colleagues performed a transposon-based somatic mutagenesis screen for genes involved in malignant peripheral nerve sheath tumors (MPNSTs). They identified many recurrent transposon insertions and nominate
Foxr2
as a new oncogene in MPNSTs.
Malignant peripheral nerve sheath tumors (MPNSTs) are sarcomas of Schwann cell lineage origin that occur sporadically or in association with the inherited syndrome neurofibromatosis type 1. To identify genetic drivers of MPNST development, we used the
Sleeping Beauty
(
SB
) transposon-based somatic mutagenesis system in mice with somatic loss of transformation-related protein p53 (
Trp53
) function and/or overexpression of human epidermal growth factor receptor (
EGFR
). Common insertion site (CIS) analysis of 269 neurofibromas and 106 MPNSTs identified 695 and 87 sites with a statistically significant number of recurrent transposon insertions, respectively. Comparison to human data sets identified new and known driver genes for MPNST formation at these sites. Pairwise co-occurrence analysis of CIS-associated genes identified many cooperating mutations that are enriched in Wnt/β-catenin, PI3K-AKT-mTOR and growth factor receptor signaling pathways. Lastly, we identified several new proto-oncogenes, including
Foxr2
(encoding forkhead box R2), which we functionally validated as a proto-oncogene involved in MPNST maintenance.
Journal Article
Harnessing a High Cargo-Capacity Transposon for Genetic Applications in Vertebrates
by
Hackett, Perry B.
,
Wangensteen, Kirk J.
,
Wang, Xin
in
Animals
,
Base Sequence
,
Cells, Cultured
2006
Viruses and transposons are efficient tools for permanently delivering foreign DNA into vertebrate genomes but exhibit diminished activity when cargo exceeds 8 kilobases (kb). This size restriction limits their molecular genetic and biotechnological utility, such as numerous therapeutically relevant genes that exceed 8 kb in size. Furthermore, a greater payload capacity vector would accommodate more sophisticated cis cargo designs to modulate the expression and mutagenic risk of these molecular therapeutics. We show that the Tol2 transposon can efficiently integrate DNA sequences larger than 10 kb into human cells. We characterize minimal sequences necessary for transposition (miniTol2) in vivo in zebrafish and in vitro in human cells. Both the 8.5-kb Tol2 transposon and 5.8-kb miniTol2 engineered elements readily function to revert the deficiency of fumarylacetoacetate hydrolase in an animal model of hereditary tyrosinemia type 1. Together, Tol2 provides a novel nonviral vector for the delivery of large genetic payloads for gene therapy and other transgenic applications.
Journal Article
Identification of Rtl1, a Retrotransposon-Derived Imprinted Gene, as a Novel Driver of Hepatocarcinogenesis
2013
We previously utilized a Sleeping Beauty (SB) transposon mutagenesis screen to discover novel drivers of HCC. This approach identified recurrent mutations within the Dlk1-Dio3 imprinted domain, indicating that alteration of one or more elements within the domain provides a selective advantage to cells during the process of hepatocarcinogenesis. For the current study, we performed transcriptome and small RNA sequencing to profile gene expression in SB-induced HCCs in an attempt to clarify the genetic element(s) contributing to tumorigenesis. We identified strong induction of Retrotransposon-like 1 (Rtl1) expression as the only consistent alteration detected in all SB-induced tumors with Dlk1-Dio3 integrations, suggesting that Rtl1 activation serves as a driver of HCC. While previous studies have identified correlations between disrupted expression of multiple Dlk1-Dio3 domain members and HCC, we show here that direct modulation of a single domain member, Rtl1, can promote hepatocarcinogenesis in vivo. Overexpression of Rtl1 in the livers of adult mice using a hydrodynamic gene delivery technique resulted in highly penetrant (86%) tumor formation. Additionally, we detected overexpression of RTL1 in 30% of analyzed human HCC samples, indicating the potential relevance of this locus as a therapeutic target for patients. The Rtl1 locus is evolutionarily derived from the domestication of a retrotransposon. In addition to identifying Rtl1 as a novel driver of HCC, our study represents one of the first direct in vivo demonstrations of a role for such a co-opted genetic element in promoting carcinogenesis.
Journal Article
Transposon-Based Genetic Screen in Mice Identifies Genes Altered in Colorectal Cancer
by
Starr, Timothy K
,
Allaei, Raha
,
Thibodeau, Stephen N
in
adenocarcinoma
,
Adenocarcinoma - genetics
,
Adenocarcinoma - pathology
2009
Human colorectal cancers (CRCs) display a large number of genetic and epigenetic alterations, some of which are causally involved in tumorigenesis (drivers) and others that have little functional impact (passengers). To help distinguish between these two classes of alterations, we used a transposon-based genetic screen in mice to identify candidate genes for CRC. Mice harboring mutagenic Sleeping Beauty (SB) transposons were crossed with mice expressing SB transposase in gastrointestinal tract epithelium. Most of the offspring developed intestinal lesions, including intraepithelial neoplasia, adenomas, and adenocarcinomas. Analysis of over 16,000 transposon insertions identified 77 candidate CRC genes, 60 of which are mutated and/or dysregulated in human CRC and thus are most likely to drive tumorigenesis. These genes include APC, PTEN, and SMAD4. The screen also identified 17 candidate genes that had not previously been implicated in CRC, including POLI, PTPRK, and RSPO2.
Journal Article
Perinatal folate levels do not influence tumor latency or multiplicity in a model of NF1 associated plexiform-like neurofibromas
2023
Objective
In epidemiological and experimental research, high folic acid intake has been demonstrated to accelerate tumor development among populations with genetic and/or molecular susceptibility to cancer. Neurofibromatosis type 1 (NF1) is a common autosomal dominant disorder predisposing affected individuals to tumorigenesis, including benign plexiform neurofibromas; however, understanding of factors associated with tumor risk in NF1 patients is limited. Therefore, we investigated whether pregestational folic acid intake modified plexiform-like peripheral nerve sheath tumor risk in a transgenic NF1 murine model.
Results
We observed no significant differences in overall survival according to folate group. Relative to controls (180 days), median survival did not statistically differ in deficient (174 days,
P
= 0.56) or supplemented (177 days,
P
= 0.13) folate groups. Dietary folate intake was positively associated with RBC folate levels at weaning, (
P
= 0.023, 0.0096, and 0.0006 for deficient vs. control, control vs. supplemented, and deficient vs. supplemented groups, respectively). Dorsal root ganglia (DRG), brachial plexi, and sciatic nerves were assessed according to folate group. Mice in the folate deficient group had significantly more enlarged DRG relative to controls (
P
= 0.044), but no other groups statistically differed. No significant differences for brachial plexi or sciatic nerve enlargement were observed according to folate status.
Journal Article
Sleeping Beauty mutagenesis screen reveals a tumor suppressor role for Ncoa2/Src-2 in liver cancer
by
Reineke, Erin L
,
Torbenson, Michael S
,
Schrum, Christina T
in
Alkylating Agents
,
Alkylating Agents - toxicity
,
animal models
2012
The Sleeping Beauty (SB) transposon mutagenesis system is a powerful tool that facilitates the discovery of mutations that accelerate tumorigenesis. In this study, we sought to identify mutations that cooperate with MYC, one of the most commonly dysregulated genes in human malignancy. We performed a forward genetic screen with a mouse model of MYC-induced liver cancer using SB-mediated mutagenesis. We sequenced insertions in 63 liver tumor nodules and identified at least 16 genes/loci that contribute to accelerated tumor development. RNAi-mediated knockdown in a liver progenitor cell line further validate three of these genes, Ncoa2/Src-2, Zfx, and Dtnb, as tumor suppressors in liver cancer. Moreover, deletion of Ncoa2/Src-2 in mice predisposes to diethylnitrosamine-induced liver tumorigenesis. These findings reveal genes and pathways that functionally restrain MYC-mediated liver tumorigenesis and therefore may provide targets for cancer therapy.
Journal Article