Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
19 result(s) for "Largeaud Laetitia"
Sort by:
New pharmacodynamic parameters linked with ibrutinib responses in chronic lymphocytic leukemia: Prospective study in real-world patients and mathematical modeling
One of the first clinical observations of ibrutinib activity in the treatment of chronic lymphocytic leukemia (CLL) is a rapid decline in lymph nodes size. This phenomenon is accompanied by an hyperlymphocytosis, either transient or prolonged, which is associated with distinct clinical responses and thus has an impact on long-term outcomes. Understanding which factors determine distinct disease courses upon ibrutinib treatment remains a scientific challenge. From 2016 to 2021, we conducted a longitudinal and observational study in 2 cohorts of patients with chronic lymphocytic leukemia (CLL) (cohort 1, n = 41; cohort 2, n = 81). These cohorts reflect the well-known clinical features of CLL patients, such as Male/Female sex ratio of 2/1, a median age of 70 years at diagnosis, and include patients in first-line therapy (27%) or relapsed/refractory patients (73%). Blood cell counts were followed for each patient during 2 years of ibrutinib treatment. In addition, immunophenotyping and whole-body magnetic resonance imaging (MRI) were assessed in patients from cohort 1. These data were integrated in a newly built mathematical model, inspired by previous mathematical works on CLL treatment and combining dynamical and statistical models, leading to the identification of biological mechanisms associated with the 2 types of clinical responses. This multidisciplinary approach allowed to identify baseline parameters that dictated lymphocytes kinetics upon ibrutinib treatment. Indeed, ibrutinib-induced lymphocytosis defined 2 CLL patient subgroups, transient hyperlymphocytosis (tHL) or prolonged hyperlymphocytosis (pHL), that can be discriminated, before the treatment, by absolute counts of CD4+ T lymphocytes (p = 0.026) and regulatory CD4 T cells (p = 0.007), programmed cell death protein 1 PD1 (p = 0.022) and CD69 (p = 0.03) expression on B leukemic cells, CD19/CD5high/CXCR4low level (p = 0.04), and lymph node cellularity. We also pinpointed that the group of patients identified by the transient hyperlymphocytosis has lower duration response and a poor clinical outcome. The mathematical approach led to the reproduction of patient-specific dynamics and the estimation of associated patient-specific biological parameters, and highlighted that the differences between the 2 groups were mainly due to the production of leukemic B cells in lymph node compartments, and to a lesser extent to T lymphocytes and leukemic B cell egress into bloodstream. Access to additional data, especially longitudinal MRI data, could strengthen the conclusions regarding leukemic B cell dynamics in lymph nodes and the relevance of 2 distinct groups of patients. Altogether, our multidisciplinary study provides a better understanding of ibrutinib response and highlights new pharmacodynamic parameters before and along ibrutinib treatment. Since our results highlight a reduced duration response and outcome in patients with transient hyperlymphocytosis, our approach provides support for managing ibrutinib therapy after 3 months of treatment. ClinicalTrials.gov NCT02824159.
What is the origin of the normal ranges of blood cell counts? An evolutionary perspective
Background The normal values of the complete blood count are part of the foundational medical knowledge that is seldom questioned due to their well‐established nature. These normal values are critical for optimal physiological function while minimizing the harmful consequences of an excessive number of blood cells. Thus, they represent an evolutionary trade‐off likely shaped by natural selection if they significantly influence individual fitness and exhibit heritability. Methods On the basis of the analysis of normal blood count values of 94 mammalian species, we discovered that certain parameters are strongly associated with diet, habitat, and lifespan. Results Carnivorous mammals had higher hemoglobin levels than vegetarians, and aquatic mammals displayed red blood cell parameters probably selected to enhance for the diving capacities. Body weight influenced platelet counts and innate immune cells, with lighter animals having higher platelet counts and larger animals showing elevated monocytes and neutrophils. Conclusions By treating the history of life as an experiment, we have discerned some evolutionary constraints likely contributing to the selection for optimal trade‐offs in blood cell count.
Impact of TP53 mutations in acute myeloid leukemia patients treated with azacitidine
Hypomethylating agents are a classical frontline low-intensity therapy for older patients with acute myeloid leukemia. Recently, TP53 gene mutations have been described as a potential predictive biomarker of better outcome in patients treated with a ten-day decitabine regimen., However, functional characteristics of TP53 mutant are heterogeneous, as reflected in multiple functional TP53 classifications and their impact in patients treated with azacitidine is less clear. We analyzed the therapeutic course and outcome of 279 patients treated with azacitidine between 2007 and 2016, prospectively enrolled in our regional healthcare network. By screening 224 of them, we detected TP53 mutations in 55 patients (24.6%), including 53 patients (96.4%) harboring high-risk cytogenetics. The identification of any TP53 mutation was associated with worse overall survival but not with response to azacitidine in the whole cohort and in the subgroup of patients with adverse karyotype. Stratification of patients according to three recent validated functional classifications did not allow the identification of TP53 mutated patients who could benefit from azacitidine. Systematic TP53 mutant classification will deserve further exploration in the setting of patients treated with conventional therapy and in the emerging field of therapies targeting TP53 pathway.
GATA2 mutated allele specific expression is associated with a hyporesponsive state of HSC in GATA2 deficiency syndrome
GATA2 germline mutations lead to a syndrome characterized by immunodeficiency, vascular disorders and myeloid malignancies. To elucidate how these mutations affect hematopoietic homeostasis, we created a knock-in mouse model expressing the recurrent Gata2 R396Q missense mutation. Employing molecular and functional approaches, we investigated the mutation’s impact on hematopoiesis, revealing significant alterations in the hematopoietic stem and progenitor (HSPC) compartment in young age. These include increased LT-HSC numbers, reduced self-renewal potential, and impaired response to acute inflammatory stimuli. The mature HSPC compartment was primarily affected at the CMP sub-population level. In the mutant LT-HSC population, we identified an aberrant subpopulation strongly expressing CD150, resembling aging, but occurring prematurely. This population showed hyporesponsiveness, accumulated over time, and exhibited allele-specific expression (ASE) favoring the mutated Gata2 allele, also observed in GATA2 mutated patients. Our findings reveal the detrimental impact of a Gata2 recurrent missense mutation on the HSC compartment contributing to its functional decline. Defects in the CMP mature compartment, along with the inflammatory molecular signature, explain the loss of heterogeneity in HPC compartment observed in patients. Finally, our study provides a valuable model that recapitulates the ASE-related pathology observed in GATA2 deficiency, shedding light on the mechanisms contributing to the disease’s natural progression.
Longitudinal CITE-Seq profiling of chronic lymphocytic leukemia during ibrutinib treatment: evolution of leukemic and immune cells at relapse
Background Ibrutinib, an irreversible Bruton Tyrosine Kinase (BTK) inhibitor, has revolutionized Chronic Lymphocytic Leukemia (CLL) treatment, but resistances to ibrutinib have emerged, whether related or not to BTK mutations. Patterns of CLL evolution under ibrutinib therapy are well characterized for the leukemic cells but not for their microenvironment. Methods Here, we addressed this question at the single cell level of both transcriptome and immune-phenotype. The PBMCs from a CLL patient were monitored during ibrutinib treatment using Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-Seq) technology. Results This unveiled that the short clinical relapse of this patient driven by BTK mutation is associated with intraclonal heterogeneity in B leukemic cells and up-regulation of common signaling pathways induced by ibrutinib in both B leukemic cells and immune cells. This approach also pinpointed a subset of leukemic cells present before treatment and highly enriched during progression under ibrutinib. These latter exhibit an original gene signature including up-regulated BCR, MYC-activated, and other targetable pathways. Meanwhile, although ibrutinib differentially affected the exhaustion of T lymphocytes, this treatment enhanced the T cell cytotoxicity even during disease progression. Conclusions These results could open new alternative of therapeutic strategies for ibrutinib-refractory CLL patients, based on immunotherapy or targeting B leukemic cells themselves.
Phenotypically-defined stages of leukemia arrest predict main driver mutations subgroups, and outcome in acute myeloid leukemia
Classifications of acute myeloid leukemia (AML) patients rely on morphologic, cytogenetic, and molecular features. Here we have established a novel flow cytometry-based immunophenotypic stratification showing that AML blasts are blocked at specific stages of differentiation where features of normal myelopoiesis are preserved. Six stages of leukemia differentiation-arrest categories based on CD34, CD117, CD13, CD33, MPO, and HLA-DR expression were identified in two independent cohorts of 2087 and 1209 AML patients. Hematopoietic stem cell/multipotent progenitor-like AMLs display low proliferation rate, inv(3) or RUNX1 mutations, and high leukemic stem cell frequency as well as poor outcome, whereas granulocyte–monocyte progenitor-like AMLs have CEBPA mutations, RUNX1-RUNX1T1 or CBFB-MYH11 translocations, lower leukemic stem cell frequency, higher chemosensitivity, and better outcome. NPM1 mutations correlate with most mature stages of leukemia arrest together with TET2 or IDH mutations in granulocyte progenitors-like AML or with DNMT3A mutations in monocyte progenitors-like AML. Overall, we demonstrate that AML is arrested at specific stages of myeloid differentiation (SLA classification) that significantly correlate with AML genetic lesions, clinical presentation, stem cell properties, chemosensitivity, response to therapy, and outcome.
Imatinib with intensive chemotherapy in AML with t(9;22)(q34.1;q11.2)/BCR::ABL1. A DATAML registry study
Acute myeloid leukemia (AML) with t(9;22) (q34.1; q11.2)/ BCR::ABL1 , a distinct entity within the group of AML with defining genetic abnormalities, belong to the adverse-risk group of the 2022 ELN classification. However, there is little data on outcome since the era of tyrosine kinase inhibitors. Among 5819 AML cases included in the DATAML registry, 20 patients with de novo BCR::ABL1 + AML (0.3%) were identified. Eighteen patients treated with standard induction chemotherapy were analyzed in this study. Imatinib was added to chemotherapy in 16 patients. The female-to-male ratio was 1.25 and median age was 54 years. The t(9;22) translocation was the sole chromosomal abnormality in 12 patients. Main gene mutations detected by NGS were ASXL1 , RUNX1 and NPM1 . Compared with patients with myeloid blast phase of chronic myeloid leukemia (CML-BP), de novo BCR::ABL1 + AML had higher WBC, fewer additional chromosomal abnormalities, lower CD36 or CD7 expression and no ABL1 mutations. Seventeen patients (94.4%) achieved complete remission (CR) or CR with incomplete hematologic recovery. Twelve patients were allografted in first remission. With a median follow-up of 6.3 years, the median OS was not reached and 2-year OS was 77% (95% CI: 50–91). Four out of five patients who were not transplanted did not relapse. Comparison of BCR::ABL1 + AML, CML-BP, 2017 ELN intermediate ( n  = 643) and adverse-risk patients ( n  = 863) showed that patients with BCR::ABL1 + AML had a significant better outcome than intermediate and adverse-risk patients. BCR::ABL1 + AML patients treated with imatinib and intensive chemotherapy should not be included in the adverse-risk group of current AML classifications.
Impact of TP53 mutations in acute myeloid leukemia patients treated with azacitidine
Hypomethylating agents are a classical frontline low-intensity therapy for older patients with acute myeloid leukemia. Recently, TP53 gene mutations have been described as a potential predictive biomarker of better outcome in patients treated with a ten-day decitabine regimen., However, functional characteristics of TP53 mutant are heterogeneous, as reflected in multiple functional TP53 classifications and their impact in patients treated with azacitidine is less clear. We analyzed the therapeutic course and outcome of 279 patients treated with azacitidine between 2007 and 2016, prospectively enrolled in our regional healthcare network. By screening 224 of them, we detected TP53 mutations in 55 patients (24.6%), including 53 patients (96.4%) harboring high-risk cytogenetics. The identification of any TP53 mutation was associated with worse overall survival but not with response to azacitidine in the whole cohort and in the subgroup of patients with adverse karyotype. Stratification of patients according to three recent validated functional classifications did not allow the identification of TP53 mutated patients who could benefit from azacitidine. Systematic TP53 mutant classification will deserve further exploration in the setting of patients treated with conventional therapy and in the emerging field of therapies targeting TP53 pathway.
Dismal outcome of refractory or relapsing patients with myelodysplasia‐related acute myeloid leukemia partially alleviated by intensive chemotherapy
Background Acute myeloid leukemia (AML) with myelodysplasia‐related characteristics is a heterogeneous subset of AML that has been challenged throughout the history of myeloid malignancies classifications, considered to have similar outcomes as intermediate‐ or adverse‐risk AML depending on the subgroup. However, little is known about the fate of these patients in refractory or relapsed situation (R/R) after first line therapy. Methods A large series of R/R AML patients, recorded in the French DATAML registry, have received either intensive chemotherapy (ICT), azacitidine (AZA) as single agent, or best supportive care (BSC). A cohort of 183 patients (median age 63‐year‐old) with what was called at the time AML‐MRC has been explored, and data are reported here. Results Patient status was refractory for 93, while 90 had relapsed. Respectively, 88, 34, and 61 were included in the three treatment arms. The median OS of the whole cohort was 4.2 months (95%CI: 3.1–5.6) with a mean 1‐year overall survival of 24% ± 3.2%. There was no significant survival difference between refractory and relapsed patients. The BSC group had overall a significantly worse outcome (p = 0.0001), and this remained true in both refractory (p = 0.01) and relapsed (p = 0.002) patients. Similar survivals were observed in both groups comparing ICT and AZA. Conclusions These data, reporting about an ill‐explored population, indicate the poor prognosis of this condition where both ICT and AZA can be proposed. The latter, which was demonstrated here to be a feasible option, should be added to new targeted therapies.