Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
23
result(s) for
"Larsen, Rachael"
Sort by:
Shared and distinct transcriptomic cell types across neocortical areas
2018
The neocortex contains a multitude of cell types that are segregated into layers and functionally distinct areas. To investigate the diversity of cell types across the mouse neocortex, here we analysed 23,822 cells from two areas at distant poles of the mouse neocortex: the primary visual cortex and the anterior lateral motor cortex. We define 133 transcriptomic cell types by deep, single-cell RNA sequencing. Nearly all types of GABA (γ-aminobutyric acid)-containing neurons are shared across both areas, whereas most types of glutamatergic neurons were found in one of the two areas. By combining single-cell RNA sequencing and retrograde labelling, we match transcriptomic types of glutamatergic neurons to their long-range projection specificity. Our study establishes a combined transcriptomic and projectional taxonomy of cortical cell types from functionally distinct areas of the adult mouse cortex.
Single-cell transcriptomics of more than 20,000 cells from two functionally distinct areas of the mouse neocortex identifies 133 transcriptomic types, and provides a foundation for understanding the diversity of cortical cell types.
Journal Article
Morphological diversity of single neurons in molecularly defined cell types
2021
Dendritic and axonal morphology reflects the input and output of neurons and is a defining feature of neuronal types
1
,
2
, yet our knowledge of its diversity remains limited. Here, to systematically examine complete single-neuron morphologies on a brain-wide scale, we established a pipeline encompassing sparse labelling, whole-brain imaging, reconstruction, registration and analysis. We fully reconstructed 1,741 neurons from cortex, claustrum, thalamus, striatum and other brain regions in mice. We identified 11 major projection neuron types with distinct morphological features and corresponding transcriptomic identities. Extensive projectional diversity was found within each of these major types, on the basis of which some types were clustered into more refined subtypes. This diversity follows a set of generalizable principles that govern long-range axonal projections at different levels, including molecular correspondence, divergent or convergent projection, axon termination pattern, regional specificity, topography, and individual cell variability. Although clear concordance with transcriptomic profiles is evident at the level of major projection type, fine-grained morphological diversity often does not readily correlate with transcriptomic subtypes derived from unsupervised clustering, highlighting the need for single-cell cross-modality studies. Overall, our study demonstrates the crucial need for quantitative description of complete single-cell anatomy in cell-type classification, as single-cell morphological diversity reveals a plethora of ways in which different cell types and their individual members may contribute to the configuration and function of their respective circuits.
Sparse labelling and whole-brain imaging are used to reconstruct and classify brain-wide complete morphologies of 1,741 individual neurons in the mouse brain, revealing a dependence on both brain region and transcriptomic profile.
Journal Article
Inferring cortical function in the mouse visual system through large-scale systems neuroscience
by
Cain, Nicholas
,
Berg, Jim
,
Iyer, Ramakrishnan
in
Animals
,
Biological Sciences
,
COLLOQUIUM PAPER
2016
The scientific mission of the Project MindScope is to understand neocortex, the part of the mammalian brain that gives rise to perception, memory, intelligence, and consciousness. We seek to quantitatively evaluate the hypothesis that neocortex is a relatively homogeneous tissue, with smaller functional modules that perform a common computational function replicated across regions. We here focus on the mouse as a mammalian model organism with genetics, physiology, and behavior that can be readily studied and manipulated in the laboratory. We seek to describe the operation of cortical circuitry at the computational level by comprehensively cataloging and characterizing its cellular building blocks along with their dynamics and their cell type-specific connectivities. The project is also building large-scale experimental platforms (i.e., brain observatories) to record the activity of large populations of cortical neurons in behaving mice subject to visual stimuli. A primary goal is to understand the series of operations from visual input in the retina to behavior by observing and modeling the physical transformations of signals in the corticothalamic system. We here focus on the contribution that computer modeling and theory make to this long-term effort.
Journal Article
Enhancer viruses and a transgenic platform for combinatorial cell subclass-specific labeling
2020
The rapid pace of cell type identification by new single-cell analysis methods has not been met with efficient experimental access to the newly discovered types. To enable flexible and efficient access to specific neural populations in the mouse cortex, we collected chromatin accessibility data from individual cells and clustered the single-cell data to identify enhancers specific for cell classes and subclasses. When cloned into adeno-associated viruses (AAVs) and delivered to the brain by retro-orbital injections, these enhancers drive transgene expression in specific cell subclasses in the cortex. We characterize several enhancer viruses in detail to show that they result in labeling of different projection neuron subclasses in mouse cortex, and that one of them can be used to label the homologous projection neuron subclass in human cortical slices. To enable the combinatorial labeling of more than one cell type by enhancer viruses, we developed a three-color Cre-, Flp- and Nigri- recombinase dependent reporter mouse line, Ai213. The delivery of three enhancer viruses driving these recombinases via a single retroorbital injection into a single Ai213 transgenic mouse results in labeling of three different neuronal classes/subclasses in the same brain tissue. This approach combines unprecedented flexibility with specificity for investigation of cell types in the mouse brain and beyond. Competing Interest Statement The authors have declared no competing interest. Footnotes * This preprint has been updated from original biorXiv submission. The following are major changes: Version 3: 1. Characterization of triple-reporter mouse line Ai213. 2. Description and characterization of additional viral constructs: enhanced versions of mscRE4-based constructs, additional L6-targeted enhancers, additional high-specificity L5 PT-targeted enhancers. 3. Viral infection experiments in human slice culture demonstrating cross-species functionality of L5 PT enhancers. 4. RNAscope experiments to validate specificity and completeness of several enhancer viruses 5. Removal of coembedding analyses with Cusanovich, Hill, et al. (2018) data. It's a great dataset, but fit less with the theme of the manuscript as we shift more towards additional genetic tools. Version 2: 1. Correction of GM12878 cell culturing and collection methods. GM12878 is a suspension cell line, not adherent. Thanks to Darren Cusanovich for identifying this error. 2. Addition of GM12878 data from Pliner, et al. (2018) to Supp Fig 4 and updates to some calculations. This better shows the high quality of current sci-ATAC-seq methods. Thanks to Jay Shendure and Darren Cusanovich for recommending this addition. 3. Updated analysis of Cusanovich, Hill, et al. (2018) data in Supp Fig 7 by changing the label metadata column selected. Thanks to Andrew Hill for recommending these higher-resolution labels. 4. Proper citation of Cusanovich, Hill et al. (2018), and discussion of the prior work in Drosophila in Cusanovich, Reddington, Garfield et al. (2018). Thanks to Jay Shendure for identifying these omissions. 5. Listing of R packages used for analysis.
A large-scale, standardized physiological survey reveals higher order coding throughout the mouse visual cortex
by
Shea-Brown, Eric
,
Keenan, Tom
,
Hargrave, Perry
in
Datasets
,
Information processing
,
Neural coding
2018
To understand how the brain processes sensory information to guide behavior, we must know how stimulus representations are transformed throughout the visual cortex. Here we report an open, large-scale physiological survey of neural activity in the awake mouse visual cortex: the Allen Brain Observatory Visual Coding dataset. This publicly available dataset includes cortical activity from nearly 60,000 neurons collected from 6 visual areas, 4 layers, and 12 transgenic mouse lines from 221 adult mice, in response to a systematic set of visual stimuli. Using this dataset, we reveal functional differences across these dimensions and show that visual cortical responses are sparse but correlated. Surprisingly, responses to different stimuli are largely independent, e.g. whether a neuron responds to natural scenes provides no information about whether it responds to natural movies or to gratings. We show that these phenomena cannot be explained by standard local filter-based models, but are consistent with multi-layer hierarchical computation, as found in deeper layers of standard convolutional neural networks.
A suite of enhancer AAVs and transgenic mouse lines for genetic access to cortical cell types
2024
The mammalian cortex is comprised of cells classified into types according to shared properties. Defining the contribution of each cell type to the processes guided by the cortex is essential for understanding its function in health and disease. We used transcriptomic and epigenomic cortical cell type taxonomies from mouse and human to define marker genes and putative enhancers and created a large toolkit of transgenic lines and enhancer AAVs for selective targeting of cortical cell populations. We report evaluation of fifteen new transgenic driver lines, two new reporter lines, and >800 different enhancer AAVs covering most subclasses of cortical cells. The tools reported here as well as the scaled process of tool creation and modification enable diverse experimental strategies towards understanding mammalian cortex and brain function.
Journal Article
Brain-wide single neuron reconstruction reveals morphological diversity in molecularly defined striatal, thalamic, cortical and claustral neuron types
by
Veldman, Matthew B
,
Ding, Liya
,
Yuan, Jia
in
Basal ganglia
,
Computational neuroscience
,
Cortex
2020
ABSTRACT Ever since the seminal findings of Ramon y Cajal, dendritic and axonal morphology has been recognized as a defining feature of neuronal types. Yet our knowledge concerning the diversity of neuronal morphologies, in particular distal axonal projection patterns, is extremely limited. To systematically obtain single neuron full morphology on a brain-wide scale, we established a platform with five major components: sparse labeling, whole-brain imaging, reconstruction, registration, and classification. We achieved sparse, robust and consistent fluorescent labeling of a wide range of neuronal types by combining transgenic or viral Cre delivery with novel transgenic reporter lines. We acquired high-resolution whole-brain fluorescent images from a large set of sparsely labeled brains using fluorescence micro-optical sectioning tomography (fMOST). We developed a set of software tools for efficient large-volume image data processing, registration to the Allen Mouse Brain Common Coordinate Framework (CCF), and computer-assisted morphological reconstruction. We reconstructed and analyzed the complete morphologies of 1,708 neurons from the striatum, thalamus, cortex and claustrum. Finally, we classified these cells into multiple morphological and projection types and identified a set of region-specific organizational rules of long-range axonal projections at the single cell level. Specifically, different neuron types from different regions follow highly distinct rules in convergent or divergent projection, feedforward or feedback axon termination patterns, and between-cell homogeneity or heterogeneity. Major molecularly defined classes or types of neurons have correspondingly distinct morphological and projection patterns, however, we also identify further remarkably extensive morphological and projection diversity at more fine-grained levels within the major types that cannot presently be accounted for by preexisting transcriptomic subtypes. These insights reinforce the importance of full morphological characterization of brain cell types and suggest a plethora of ways different cell types and individual neurons may contribute to the function of their respective circuits. Competing Interest Statement The authors have declared no competing interest. Footnotes * This version of the manuscript has been revised to correct a typo in the title.
Brain-wdie single neuron reconstruction reveals morphological diversity in molecularly defined striatal, thalamic, cortical and claustral neuron types
2020
Ever since the seminal findings of Ramon y Cajal, dendritic and axonal morphology has been recognized as a defining feature of neuronal types. Yet our knowledge concerning the diversity of neuronal morphologies, in particular distal axonal projection patterns, is extremely limited. To systematically obtain single neuron full morphology on a brain-wide scale, we established a platform with five major components: sparse labeling, whole-brain imaging, reconstruction, registration, and classification. We achieved sparse, robust and consistent fluorescent labeling of a wide range of neuronal types by combining transgenic or viral Cre delivery with novel transgenic reporter lines. We acquired high-resolution whole-brain fluorescent images from a large set of sparsely labeled brains using fluorescence micro-optical sectioning tomography (fMOST). We developed a set of software tools for efficient large-volume image data processing, registration to the Allen Mouse Brain Common Coordinate Framework (CCF), and computer-assisted morphological reconstruction. We reconstructed and analyzed the complete morphologies of 1,708 neurons from the striatum, thalamus, cortex and claustrum. Finally, we classified these cells into multiple morphological and projection types and identified a set of region-specific organizational rules of long-range axonal projections at the single cell level. Specifically, different neuron types from different regions follow highly distinct rules in convergent or divergent projection, feedforward or feedback axon termination patterns, and between-cell homogeneity or heterogeneity. Major molecularly defined classes or types of neurons have correspondingly distinct morphological and projection patterns, however, we also identify further remarkably extensive morphological and projection diversity at more fine-grained levels within the major types that cannot presently be accounted for by preexisting transcriptomic subtypes. These insights reinforce the importance of full morphological characterization of brain cell types and suggest a plethora of ways different cell types and individual neurons may contribute to the function of their respective circuits.
A suite of transgenic driver and reporter mouse lines with enhanced brain cell type targeting and functionality
2017
Modern genetic approaches are powerful in providing access to diverse types of neurons within the mammalian brain and greatly facilitating the study of their function. We here report a large set of driver and reporter transgenic mouse lines, including 23 new driver lines targeting a variety of cortical and subcortical cell populations and 26 new reporter lines expressing an array of molecular tools. In particular, we describe the TIGRE2.0 transgenic platform and introduce Cre-dependent reporter lines that enable optical physiology, optogenetics, and sparse labeling of genetically-defined cell populations. TIGRE2.0 reporters broke the barrier in transgene expression level of single-copy targeted-insertion transgenesis in a wide range of neuronal types, along with additional advantage of a simplified breeding strategy compared to our first-generation TIGRE lines. These novel transgenic lines greatly expand the repertoire of high-precision genetic tools available to effectively identify, monitor, and manipulate distinct cell types in the mouse brain.
Shared and distinct transcriptomic cell types across neocortical areas
by
Phillips, John
,
Looger, Loren
,
Kanan Lathia
in
Cortex (motor)
,
Neuroscience
,
Ribonucleic acid
2017
Neocortex contains a multitude of cell types segregated into layers and functionally distinct regions. To investigate the diversity of cell types across the mouse neocortex, we analyzed 12,714 cells from the primary visual cortex (VISp), and 9,035 cells from the anterior lateral motor cortex (ALM) by deep single-cell RNA-sequencing (scRNA-seq), identifying 116 transcriptomic cell types. These two regions represent distant poles of the neocortex and perform distinct functions. We define 50 inhibitory transcriptomic cell types, all of which are shared across both cortical regions. In contrast, 49 of 52 excitatory transcriptomic types were found in either VISp or ALM, with only three present in both. By combining single cell RNA-seq and retrograde labeling, we demonstrate correspondence between excitatory transcriptomic types and their region-specific long-range target specificity. This study establishes a combined transcriptomic and projectional taxonomy of cortical cell types from functionally distinct regions of the mouse cortex.