Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
120
result(s) for
"Larson, Greger"
Sort by:
The Evolution of Animal Domestication
by
Larson, Greger
,
Fuller, Dorian Q.
in
Animal domestication
,
Animal genetics
,
Animal populations
2014
The domestication of plants and animals over the past 11,500 years has had a significant effect not just on the domesticated taxa but also on human evolution and on the biosphere as a whole. Decades of research into the geographical and chronological origins of domestic animals have led to a general understanding of the pattern and process of domestication, though a number of significant questions remain unresolved. Here, building upon recent theoretical advances regarding the different pathways animals followed to become domesticated, we present a large-scale synthesis that addresses the global pattern of animal domestication alongside a discussion of the differential evolutionary processes that have shaped domestic animal populations. More specifically, we present a framework for understanding how unconscious selection characterized the earliest steps of animal domestication and the role of introgression and the importance of relaxed and positive selection in shaping modern domestic phenotypes and genomes.
Journal Article
Animal domestication in the era of ancient genomics
by
Frantz Laurent A F
,
Larson, Greger
,
Bradley, Daniel G
in
Deoxyribonucleic acid
,
DNA sequencing
,
Domestication
2020
The domestication of animals led to a major shift in human subsistence patterns, from a hunter–gatherer to a sedentary agricultural lifestyle, which ultimately resulted in the development of complex societies. Over the past 15,000 years, the phenotype and genotype of multiple animal species, such as dogs, pigs, sheep, goats, cattle and horses, have been substantially altered during their adaptation to the human niche. Recent methodological innovations, such as improved ancient DNA extraction methods and next-generation sequencing, have enabled the sequencing of whole ancient genomes. These genomes have helped reconstruct the process by which animals entered into domestic relationships with humans and were subjected to novel selection pressures. Here, we discuss and update key concepts in animal domestication in light of recent contributions from ancient genomics.Improvements in DNA extraction methods and sequencing technologies have led to the successful sequencing of numerous whole ancient genomes. In this Review, the authors provide an overview of how ancient DNA has informed our understanding of the domestication of various animal species, including dogs, pigs, cattle, goats and chickens.
Journal Article
Ecological consequences of human niche construction
by
Erlandson, Jon M.
,
Boivin, Nicole L.
,
Petraglia, Michael D.
in
Agriculture
,
Animals
,
Anthropogenic factors
2016
The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens. A crucial outcome of such behaviors has been the dramatic reshaping of the global biosphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity—the Late Pleistocene global human expansion, the Neolithic spread of agriculture, the era of island colonization, and the emergence of early urbanized societies and commercial networks. Archaeological evidence documents millennia of anthropogenic transformations that have created novel ecosystems around the world. This record has implications for ecological and evolutionary research, conservation strategies, and the maintenance of ecosystem services, pointing to a significant need for broader cross-disciplinary engagement between archaeology and the biological and environmental sciences.
Journal Article
The biocultural origins and dispersal of domestic chickens
by
Lebrasseur, Ophélie
,
Paxinos, Ptolemaios Dimitrios
,
Sykes, Naomi
in
Agricultural practices
,
Animals
,
Animals, Domestic
2022
Though chickens are the most numerous and ubiquitous domestic bird, their origins, the circumstances of their initial association with people, and the routes along which they dispersed across the world remain controversial. In order to establish a robust spatial and temporal framework for their origins and dispersal, we assessed archaeological occurrences and the domestic status of chickens from ∼600 sites in 89 countries by combining zoogeographic, morphological, osteometric, stratigraphic, contextual, iconographic, and textual data. Our results suggest that the first unambiguous domestic chicken bones are found at Neolithic Ban Non Wat in central Thailand dated to ∼1650 to 1250 BCE, and that chickens were not domesticated in the Indian Subcontinent. Chickens did not arrive in Central China, South Asia, or Mesopotamia until the late second millennium BCE, and in Ethiopia and Mediterranean Europe by ∼800 BCE. To investigate the circumstances of their initial domestication, we correlated the temporal spread of rice and millet cultivation with the first appearance of chickens within the range of red junglefowl species. Our results suggest that agricultural practices focused on the production and storage of cereal staples served to draw arboreal red junglefowl into the human niche. Thus, the arrival of rice agriculture may have first facilitated the initiation of the chicken domestication process, and then, following their integration within human communities, allowed for their dispersal across the globe.
Journal Article
Proteomic evidence of dietary sources in ancient dental calculus
2018
Archaeological dental calculus has emerged as a rich source of ancient biomolecules, including proteins. Previous analyses of proteins extracted from ancient dental calculus revealed the presence of the dietary milk protein β-lactoglobulin, providing direct evidence of dairy consumption in the archaeological record. However, the potential for calculus to preserve other food-related proteins has not yet been systematically explored. Here we analyse shotgun metaproteomic data from 100 archaeological dental calculus samples ranging from the Iron Age to the post-medieval period (eighth century BC to nineteenth century AD) in England, as well as 14 dental calculus samples from contemporary dental patients and recently deceased individuals, to characterize the range and extent of dietary proteins preserved in dental calculus. In addition to milk proteins, we detect proteomic evidence of foodstuffs such as cereals and plant products, as well as the digestive enzyme salivary amylase. We discuss the importance of optimized protein extraction methods, data analysis approaches and authentication strategies in the identification of dietary proteins from archaeological dental calculus. This study demonstrates that proteomic approaches can robustly identify foodstuffs in the archaeological record that are typically under-represented due to their poor macroscopic preservation.
Journal Article
Rethinking dog domestication by integrating genetics, archeology, and biogeography
by
Perri, Angela
,
Agoulnik, Alexander I.
,
Stahl, Peter W.
in
Animal domestication
,
Animal genetics
,
Animals
2012
The dog was the first domesticated animal but it remains uncertain when the domestication process began and whether it occurred just once or multiple times across the Northern Hemisphere. To ascertain the value of modern genetic data to elucidate the origins of dog domestication, we analyzed 49,024 autosomal SNPs in 1,375 dogs (representing 35 breeds) and 19 wolves. After combining our data with previously published data, we contrasted the genetic signatures of 121 breeds with a worldwide archeological assessment of the earliest dog remains. Correlating the earliest archeological dogs with the geographic locations of 14 so-called \"ancient\" breeds (defined by their genetic differentiation) resulted in a counterintuitive pattern. First none of the ancient breeds derive from regions where the oldest archeological remains have been found. Second, three of the ancient breeds (Basenjis, Dingoes, and New Guinea Singing Dogs) come from regions outside the natural range of Canis lupus (the dog's wild ancestor) and where dogs were introduced more than 10,000 y after domestication. These results demonstrate that the unifying characteristic among all genetically distinct so-called ancient breeds is a lack of recent admixture with other breeds likely facilitated by geographic and cultural isolation. Furthermore, these genetically distinct ancient breeds only appear so because of their relative isolation, suggesting that studies of modern breeds have yet to shed light on dog origins. We conclude by assessing the limitations of past studies and how next-generation sequencing of modern and ancient individuals may unravel the history of dog domestication.
Journal Article
How Much Is That in Dog Years? The Advent of Canine Population Genomics
2014
[...]because wolves were once distributed across the entire Northern Hemisphere, zooarchaeologists have not been able to establish the wild or domestic status of fossil canid remains based solely on geographic location; thus cranial and dental characters have had to be used to differentiate domestic dogs from wild wolves. In other words, the genomic evidence for copy number variation in dietary genes between dogs and wolves suggested that the archaeologists were wrong, and that dogs were domesticated not before, but after the origin of agriculture.
Journal Article
Contrasting Mode of Evolution at a Coat Color Locus in Wild and Domestic Pigs
by
Li, Ning
,
Soares Ribeiro, Helena
,
Andersson, Leif
in
Alleles
,
Animal and Dairy Science
,
Animals
2009
Despite having only begun approximately 10,000 years ago, the process of domestication has resulted in a degree of phenotypic variation within individual species normally associated with much deeper evolutionary time scales. Though many variable traits found in domestic animals are the result of relatively recent human-mediated selection, uncertainty remains as to whether the modern ubiquity of long-standing variable traits such as coat color results from selection or drift, and whether the underlying alleles were present in the wild ancestor or appeared after domestication began. Here, through an investigation of sequence diversity at the porcine melanocortin receptor 1 (MC1R) locus, we provide evidence that wild and domestic pig (Sus scrofa) haplotypes from China and Europe are the result of strikingly different selection pressures, and that coat color variation is the result of intentional selection for alleles that appeared after the advent of domestication. Asian and European wild boar (evolutionarily distinct subspecies) differed only by synonymous substitutions, demonstrating that camouflage coat color is maintained by purifying selection. In domestic pigs, however, each of nine unique mutations altered the amino acid sequence thus generating coat color diversity. Most domestic MC1R alleles differed by more than one mutation from the wild-type, implying a long history of strong positive selection for coat color variants, during which time humans have cherry-picked rare mutations that would be quickly eliminated in wild contexts. This pattern demonstrates that coat color phenotypes result from direct human selection and not via a simple relaxation of natural selective pressures.
Journal Article
Reconsidering the distribution of gray wolves
2017
Larson talks about a study by Wang and colleagues which systematically searched for evidence for the presence of wolves in China. Result from the study demonstrates the pitfalls of taking species distribution maps at face value as the line demarking the southern boundary of the grey wolf distribution has enormous ramifications. If wolves were present in central and southern China as recently as the second half of the 20th century, they were likely present in the preceding millennia and thus, they could have been the source of a domestication process in East Asia.
Journal Article
Identification of the Yellow Skin Gene Reveals a Hybrid Origin of the Domestic Chicken
by
Gunnarsson, Ulrika
,
Vereijken, Addie
,
Tixier-Boichard, Michele
in
Alleles
,
Animal biology
,
Animals
2008
Yellow skin is an abundant phenotype among domestic chickens and is caused by a recessive allele (W*Y) that allows deposition of yellow carotenoids in the skin. Here we show that yellow skin is caused by one or more cis-acting and tissue-specific regulatory mutation(s) that inhibit expression of BCDO2 (beta-carotene dioxygenase 2) in skin. Our data imply that carotenoids are taken up from the circulation in both genotypes but are degraded by BCDO2 in skin from animals carrying the white skin allele (W*W). Surprisingly, our results demonstrate that yellow skin does not originate from the red junglefowl (Gallus gallus), the presumed sole wild ancestor of the domestic chicken, but most likely from the closely related grey junglefowl (Gallus sonneratii). This is the first conclusive evidence for a hybrid origin of the domestic chicken, and it has important implications for our views of the domestication process.
Journal Article