Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"Larus, Isabel"
Sort by:
SMOC-1 interacts with both BMP and glypican to regulate BMP signaling in C. elegans
by
Williams, Byron
,
DeGroot, Melisa S.
,
Larus, Isabel M.
in
Binding
,
Biological research
,
Biology and life sciences
2023
Secreted modular calcium-binding proteins (SMOCs) are conserved matricellular proteins found in organisms from Caenorhabditis elegans to humans. SMOC homologs characteristically contain 1 or 2 extracellular calcium-binding (EC) domain(s) and 1 or 2 thyroglobulin type-1 (TY) domain(s). SMOC proteins in Drosophila and Xenopus have been found to interact with cell surface heparan sulfate proteoglycans (HSPGs) to exert both positive and negative influences on the conserved bone morphogenetic protein (BMP) signaling pathway. In this study, we used a combination of biochemical, structural modeling, and molecular genetic approaches to dissect the functions of the sole SMOC protein in C . elegans . We showed that CeSMOC-1 binds to the heparin sulfate proteoglycan GPC3 homolog LON-2/glypican, as well as the mature domain of the BMP2/4 homolog DBL-1. Moreover, CeSMOC-1 can simultaneously bind LON-2/glypican and DBL-1/BMP. The interaction between CeSMOC-1 and LON-2/glypican is mediated specifically by the EC domain of CeSMOC-1, while the full interaction between CeSMOC-1 and DBL-1/BMP requires full-length CeSMOC-1. We provide both in vitro biochemical and in vivo functional evidence demonstrating that CeSMOC-1 functions both negatively in a LON-2/glypican-dependent manner and positively in a DBL-1/BMP-dependent manner to regulate BMP signaling. We further showed that in silico, Drosophila and vertebrate SMOC proteins can also bind to mature BMP dimers. Our work provides a mechanistic basis for how the evolutionarily conserved SMOC proteins regulate BMP signaling.
Journal Article
C. elegans SMOC-1 interacts with both BMP and glypican to regulate BMP signaling
by
Fromme, J Christopher
,
Williams, Byron
,
Maas Gamboa, Maria L
in
Bone morphogenetic proteins
,
Calcium (extracellular)
,
Calcium signalling
2023
Secreted modular calcium binding (SMOC) proteins are conserved matricellular proteins found in organisms from C. elegans to humans. SMOC homologs characteristically contain one or two extracellular calcium (EC) binding domain(s) and one or two thyroglobulin type-1 (TY) domain(s). SMOC proteins in Drosophila and Xenopus have been found to interact with cell surface heparan sulfate protein glycans (HSPGs) to exert both positive and negative influences on the conserved bone morphogenetic protein (BMP) signaling pathway. In this study, we used a combination of biochemical, structural modeling, and molecular genetic approaches to dissect the functions of the sole SMOC protein in C. elegans. We showed that SMOC-1 binds LON-2/glypican, as well as the mature domain of DBL-1/BMP. Moreover, SMOC-1 can simultaneously bind LON-2/glypican and DBL-1/BMP. The interaction between SMOC-1 and LON-2/glypican is mediated by the EC domain of SMOC-1, while the interaction between SMOC-1 and DBL-1/BMP involves full-length SMOC-1. We further showed that while SMOC-1(EC) is sufficient to promote BMP signaling when overexpressed, both the EC and TY domains are required for SMOC-1 function at the endogenous locus. Finally, when overexpressed, SMOC-1 can promote BMP signaling in the absence of LON-2/glypican. Taken together, our findings led to a model where SMOC-1 functions both negatively in a LON-2-dependent manner and positively in a LON-2-independent manner to regulate BMP signaling. Our work provides a mechanistic basis for how the evolutionarily conserved SMOC proteins regulate BMP signaling.Competing Interest StatementThe authors have declared no competing interest.
Cardiac troponin I directly binds and inhibits mitochondrial ATP synthase with a noncanonical role in the post-ischemic heart
by
Elezaby, Aly
,
Kraemer, Benjamin R.
,
Haileselassie, Bereketeab
in
Adenosine triphosphate
,
Adenosine Triphosphate - metabolism
,
Animals
2024
Cardiac troponin I (cTnI) is a key regulator of cardiomyocyte contraction. However, its role in mitochondria is unknown. Here we show that cTnI localized to mitochondria in the heart, inhibited mitochondrial functions when stably expressed in noncardiac cells and increased the opening of the mitochondrial permeability transition pore under oxidative stress. Direct, specific and saturable binding of cTnI to F
F
-ATP synthase was demonstrated in vitro using immune-captured ATP synthase and in cells using proximity ligation assay. cTnI binding doubled ATPase activity, whereas skeletal troponin I and several human pathogenic cTnI variants associated with familial hypertrophic cardiomyopathy did not. A rationally designed peptide, P888, inhibited cTnI binding to ATP synthase, inhibited cTnI-induced increase in ATPase activity in vitro and reduced cardiac injury following transient ischemia in vivo. We suggest that cTnI-bound ATP synthase results in lower ATP levels, and releasing this interaction during cardiac ischemia-reperfusion may increase the reservoir of functional mitochondria to reduce cardiac injury.
Journal Article
Ancestry-Shift Refinement Mapping of the C6orf97-ESR1 Breast Cancer Susceptibility Locus
by
Vermeulen, Sita H
,
Mayordomo, Jose I
,
Fredericksen, Zachary S
in
Binding sites
,
Breast cancer
,
Genealogy
2010
We used an approach that we term ancestry-shift refinement mapping to investigate an association, originally discovered in a GWAS of a Chinese population, between rs2046210[T] and breast cancer susceptibility. The locus is on 6q25.1 in proximity to the C6orf97 and estrogen receptor α (ESR1) genes. We identified a panel of SNPs that are correlated with rs2046210 in Chinese, but not necessarily so in other ancestral populations, and genotyped them in breast cancer case:control samples of Asian, European, and African origin, a total of 10,176 cases and 13,286 controls. We found that rs2046210[T] does not confer substantial risk of breast cancer in Europeans and Africans (OR = 1.04, P = 0.099, and OR = 0.98, P = 0.77, respectively). Rather, in those ancestries, an association signal arises from a group of less common SNPs typified by rs9397435. The rs9397435[G] allele was found to confer risk of breast cancer in European (OR = 1.15, P = 1.2×10-3), African (OR = 1.35, P = 0.014), and Asian (OR = 1.23, P = 2.9×10-4) population samples. Combined over all ancestries, the OR was 1.19 (P = 3.9×10-7), was without significant heterogeneity between ancestries (Phet = 0.36) and the SNP fully accounted for the association signal in each ancestry. Haplotypes bearing rs9397435[G] are well tagged by rs2046210[T] only in Asians. The rs9397435[G] allele showed associations with both estrogen receptor positive and estrogen receptor negative breast cancer. Using early-draft data from the 1,000 Genomes project, we found that the risk allele of a novel SNP (rs77275268), which is closely correlated with rs9397435, disrupts a partially methylated CpG sequence within a known CTCF binding site. These studies demonstrate that shifting the analysis among ancestral populations can provide valuable resolution in association mapping.
Journal Article