Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
78
result(s) for
"Laude, Hubert"
Sort by:
Cells release prions in association with exosomes
by
Février, Benoit
,
Archer, Fabienne
,
Centre National de la Recherche Scientifique (CNRS)
in
Amyloid - deficiency
,
Amyloid - genetics
,
Amyloid - metabolism
2004
Prion diseases are infectious neurodegenerative disorders linked to the accumulation in the central nervous system of the abnormally folded prion protein (PrP) scrapie (PrPsc), which is thought to be the infectious agent. Once present, PrPsc catalyzes the conversion of naturally occurring cellular PrP (PrPc) to PrPsc. Prion infection is usually initiated in peripheral organs, but the mechanisms involved in infectious spread to the brain are unclear. We found that both PrPc and PrPsc were actively released into the extracellular environment by PrP-expressing cells before and after infection with sheep prions, respectively. Based on Western blot with specific markers, MS, and morphological analysis, our data revealed that PrPc and PrPsc in the medium are associated with exosomes, membranous vesicles that are secreted upon fusion of multivesicular endosomes with the plasma membrane. Furthermore, we found that exosomes bearing PrPsc are infectious. Our data suggest that exosomes may contribute to intercellular membrane exchange and the spread of prions throughout the organism.
Journal Article
The Physical Relationship between Infectivity and Prion Protein Aggregates Is Strain-Dependent
by
Tixador, Philippe
,
Le Dur, Annick
,
Herzog, Laëtitia
in
Aggregates
,
Animals
,
Biochemistry/Protein Folding
2010
Prions are unconventional infectious agents thought to be primarily composed of PrP(Sc), a multimeric misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrP(C)). They cause fatal neurodegenerative diseases in both animals and humans. The disease phenotype is not uniform within species, and stable, self-propagating variations in PrP(Sc) conformation could encode this 'strain' diversity. However, much remains to be learned about the physical relationship between the infectious agent and PrP(Sc) aggregation state, and how this varies according to the strain. We applied a sedimentation velocity technique to a panel of natural, biologically cloned strains obtained by propagation of classical and atypical sheep scrapie and BSE infectious sources in transgenic mice expressing ovine PrP. Detergent-solubilized, infected brain homogenates were used as starting material. Solubilization conditions were optimized to separate PrP(Sc) aggregates from PrP(C). The distribution of PrP(Sc) and infectivity in the gradient was determined by immunoblotting and mouse bioassay, respectively. As a general feature, a major proteinase K-resistant PrP(Sc) peak was observed in the middle part of the gradient. This population approximately corresponds to multimers of 12-30 PrP molecules, if constituted of PrP only. For two strains, infectivity peaked in a markedly different region of the gradient. This most infectious component sedimented very slowly, suggesting small size oligomers and/or low density PrP(Sc) aggregates. Extending this study to hamster prions passaged in hamster PrP transgenic mice revealed that the highly infectious, slowly sedimenting particles could be a feature of strains able to induce a rapidly lethal disease. Our findings suggest that prion infectious particles are subjected to marked strain-dependent variations, which in turn could influence the strain biological phenotype, in particular the replication dynamics.
Journal Article
Sheep and Goat BSE Propagate More Efficiently than Cattle BSE in Human PrP Transgenic Mice
by
Béringue, Vincent
,
Andreoletti, Olivier
,
Pintado, Belen
in
Animals
,
Bone
,
Bovine spongiform encephalopathy
2011
A new variant of Creutzfeldt Jacob Disease (vCJD) was identified in humans and linked to the consumption of Bovine Spongiform Encephalopathy (BSE)-infected meat products. Recycling of ruminant tissue in meat and bone meal (MBM) has been proposed as origin of the BSE epidemic. During this epidemic, sheep and goats have been exposed to BSE-contaminated MBM. It is well known that sheep can be experimentally infected with BSE and two field BSE-like cases have been reported in goats. In this work we evaluated the human susceptibility to small ruminants-passaged BSE prions by inoculating two different transgenic mouse lines expressing the methionine (Met) allele of human PrP at codon 129 (tg650 and tg340) with several sheep and goat BSE isolates and compared their transmission characteristics with those of cattle BSE. While the molecular and neuropathological transmission features were undistinguishable and similar to those obtained after transmission of vCJD in both transgenic mouse lines, sheep and goat BSE isolates showed higher transmission efficiency on serial passaging compared to cattle BSE. We found that this higher transmission efficiency was strongly influenced by the ovine PrP sequence, rather than by other host species-specific factors. Although extrapolation of results from prion transmission studies by using transgenic mice has to be done very carefully, especially when human susceptibility to prions is analyzed, our results clearly indicate that Met129 homozygous individuals might be susceptible to a sheep or goat BSE agent at a higher degree than to cattle BSE, and that these agents might transmit with molecular and neuropathological properties indistinguishable from those of vCJD. Our results suggest that the possibility of a small ruminant BSE prion as vCJD causal agent could not be ruled out, and that the risk for humans of a potential goat and/or sheep BSE agent should not be underestimated.
Journal Article
Atypical/Nor98 Scrapie Infectivity in Sheep Peripheral Tissues
2011
Atypical/Nor98 scrapie was first identified in 1998 in Norway. It is now considered as a worldwide disease of small ruminants and currently represents a significant part of the detected transmissible spongiform encephalopathies (TSE) cases in Europe. Atypical/Nor98 scrapie cases were reported in ARR/ARR sheep, which are highly resistant to BSE and other small ruminants TSE agents. The biology and pathogenesis of the Atypical/Nor98 scrapie agent in its natural host is still poorly understood. However, based on the absence of detectable abnormal PrP in peripheral tissues of affected individuals, human and animal exposure risk to this specific TSE agent has been considered low. In this study we demonstrate that infectivity can accumulate, even if no abnormal PrP is detectable, in lymphoid tissues, nerves, and muscles from natural and/or experimental Atypical/Nor98 scrapie cases. Evidence is provided that, in comparison to other TSE agents, samples containing Atypical/Nor98 scrapie infectivity could remain PrP(Sc) negative. This feature will impact detection of Atypical/Nor98 scrapie cases in the field, and highlights the need to review current evaluations of the disease prevalence and potential transmissibility. Finally, an estimate is made of the infectivity loads accumulating in peripheral tissues in both Atypical/Nor98 and classical scrapie cases that currently enter the food chain. The results obtained indicate that dietary exposure risk to small ruminants TSE agents may be higher than commonly believed.
Journal Article
Prions can infect primary cultured neurons and astrocytes and promote neuronal cell death
by
Cronier, Sabrina
,
Unité de recherche Virologie et Immunologie Moléculaires (VIM (UR 0892)) ; Institut National de la Recherche Agronomique (INRA)
,
Université Paris-Sud - Paris 11 (UP11)
in
Animals
,
Apoptosis
,
Astrocytes
2004
Transmissible spongiform encephalopathies arise as a consequence of infection of the central nervous system by prions, where neurons and glial cells are regarded as primary targets. Neuronal loss and gliosis, associated with the accumulation of misfolded prion protein (PrP), are hallmarks of prion diseases; yet the mechanisms underlying such disorders remain unclear. Here we introduced a cell system based on primary cerebellar cultures established from transgenic mice expressing ovine PrP and then exposed to sheep scrapie agent. Upon exposure to low doses of infectious agent, such cultures, unlike cultures originating from PrP null mice, were found to accumulate de novo abnormal PrP and infectivity, as assessed by mouse bioassay. Importantly, using astrocyte and neuron/astrocyte cocultures, both cell types were found capable of sustaining efficient prion propagation independently, leading to the production of proteinase K-resistant PrP of the same electrophoretic profile as in diseased brain. Moreover, contrasting with data obtained in chronically infected cell lines, late-occurring apoptosis was consistently demonstrated in the infected neuronal cultures. Our results provide evidence that primary cultured neural cells, including postmitotic neurons, are permissive to prion replication, thus establishing an approach to study the mechanisms involved in prion-triggered neurodegeneration at a cellular level.
Journal Article
Quaternary Structure of Pathological Prion Protein as a Determining Factor of Strain-Specific Prion Replication Dynamics
by
Moudjou, Mohammed
,
Béringue, Vincent
,
Laude, Hubert
in
Animals
,
Creutzfeldt-Jakob disease
,
Experiments
2013
Prions are proteinaceous infectious agents responsible for fatal neurodegenerative diseases in animals and humans. They are essentially composed of PrPSc, an aggregated, misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrPC). Stable variations in PrPSc conformation are assumed to encode the phenotypically tangible prion strains diversity. However the direct contribution of PrPSc quaternary structure to the strain biological information remains mostly unknown. Applying a sedimentation velocity fractionation technique to a panel of ovine prion strains, classified as fast and slow according to their incubation time in ovine PrP transgenic mice, has previously led to the observation that the relationship between prion infectivity and PrPSc quaternary structure was not univocal. For the fast strains specifically, infectivity sedimented slowly and segregated from the bulk of proteinase-K resistant PrPSc. To carefully separate the respective contributions of size and density to this hydrodynamic behavior, we performed sedimentation at the equilibrium and varied the solubilization conditions. The density profile of prion infectivity and proteinase-K resistant PrPSc tended to overlap whatever the strain, fast or slow, leaving only size as the main responsible factor for the specific velocity properties of the fast strain most infectious component. We further show that this velocity-isolable population of discrete assemblies perfectly resists limited proteolysis and that its templating activity, as assessed by protein misfolding cyclic amplification outcompetes by several orders of magnitude that of the bulk of larger size PrPSc aggregates. Together, the tight correlation between small size, conversion efficiency and duration of disease establishes PrPSc quaternary structure as a determining factor of prion replication dynamics. For certain strains, a subset of PrP assemblies appears to be the best template for prion replication. This has important implications for fundamental studies on prions
Journal Article
newly identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes
2005
Scrapie in small ruminants belongs to transmissible spongiform encephalopathies (TSEs), or prion diseases, a family of fatal neurodegenerative disorders that affect humans and animals and can transmit within and between species by ingestion or inoculation. Conversion of the host-encoded prion protein (PrP), normal cellular PrP (PrP(c)), into a misfolded form, abnormal PrP (PrP(Sc)), plays a key role in TSE transmission and pathogenesis. The intensified surveillance of scrapie in the European Union, together with the improvement of PrP(Sc) detection techniques, has led to the discovery of a growing number of so-called atypical scrapie cases. These include clinical Nor98 cases first identified in Norwegian sheep on the basis of unusual pathological and PrP(Sc) molecular features and \"cases\" that produced discordant responses in the rapid tests currently applied to the large-scale random screening of slaughtered or fallen animals. Worryingly, a substantial proportion of such cases involved sheep with PrP genotypes known until now to confer natural resistance to conventional scrapie. Here we report that both Nor98 and discordant cases, including three sheep homozygous for the resistant PrP(ARR) allele (A136R154R171), efficiently transmitted the disease to transgenic mice expressing ovine PrP, and that they shared unique biological and biochemical features upon propagation in mice. These observations support the view that a truly infectious TSE agent, unrecognized until recently, infects sheep and goat flocks and may have important implications in terms of scrapie control and public health.
Journal Article
Facilitated cross-species transmission of prions in extraneural tissue
by
Génétique Animale et Biologie Intégrative (GABI) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech
,
Le Dur, Annick
,
Béringue, Vincent
in
Agricultural sciences
,
Animals
,
Biological and medical sciences
2012
Prions are infectious pathogens essentially composed of PrPSc, an abnormally folded form of the host-encoded prion protein PrPC. Constrained steric interactions between PrPSc and PrPC are thought to provide prions with species specificity and to control cross-species transmission into other host populations, including humans. We compared the ability of brain and lymphoid tissues from ovine and human PrP transgenic mice to replicate foreign, inefficiently transmitted prions. Lymphoid tissue was consistently more permissive than the brain to prions such as those causing chronic wasting disease and bovine spongiform encephalopathy. Furthermore, when the transmission barrier was overcome through strain shifting in the brain, a distinct agent propagated in the spleen, which retained the ability to infect the original host. Thus, prion cross-species transmission efficacy can exhibit a marked tissue dependence.
Journal Article
Highly Infectious Prions Generated by a Single Round of Microplate-Based Protein Misfolding Cyclic Amplification
by
Moudjou, Mohammed
,
Béringue, Vincent
,
Laude, Hubert
in
Animals
,
bioassays
,
Clinical Laboratory Techniques - methods
2013
Measurements of the presence of prions in biological tissues or fluids rely more and more on cell-free assays. Although protein misfolding cyclic amplification (PMCA) has emerged as a valuable, sensitive tool, it is currently hampered by its lack of robustness and rapidity for high-throughput purposes. Here, we made a number of improvements making it possible to amplify the maximum levels of scrapie prions in a single 48-h round and in a microplate format. The amplification rates and the infectious titer of the PMCA-formed prions appeared similar to those derived from the in vivo laboratory bioassays. This enhanced technique also amplified efficiently prions from different species, including those responsible for human variant Creutzfeldt-Jakob disease. This new format should help in developing ultrasensitive, high-throughput prion assays for cognitive, diagnostic, and therapeutic applications. IMPORTANCE The method developed here allows large-scale, fast, and reliable cell-free amplification of subinfectious levels of prions from different species. The sensitivity and rapidity achieved approach or equal those of other recently developed prion-seeded conversion assays. Our simplified assay may be amenable to high-throughput, automated purposes and serve in a complementary manner with other recently developed assays for urgently needed antemortem diagnostic tests, by using bodily fluids containing small amounts of prion infectivity. Such a combination of assays is of paramount importance to reduce the transfusion risk in the human population and to identify asymptomatic carriers of variant Creutzfeldt-Jakob disease. The method developed here allows large-scale, fast, and reliable cell-free amplification of subinfectious levels of prions from different species. The sensitivity and rapidity achieved approach or equal those of other recently developed prion-seeded conversion assays. Our simplified assay may be amenable to high-throughput, automated purposes and serve in a complementary manner with other recently developed assays for urgently needed antemortem diagnostic tests, by using bodily fluids containing small amounts of prion infectivity. Such a combination of assays is of paramount importance to reduce the transfusion risk in the human population and to identify asymptomatic carriers of variant Creutzfeldt-Jakob disease.
Journal Article
Divergent prion strain evolution driven by PrPC expression level in transgenic mice
by
Génétique Animale et Biologie Intégrative (GABI) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech
,
Béringue, Vincent
,
Vilotte, Jean-Luc
in
42/41
,
631/378/1689/364
,
631/45/460
2017
Prions induce a fatal neurodegenerative disease in infected host brain based on the refolding and aggregation of the host-encoded prion protein PrPC into PrPSc. Structurally distinct PrPSc conformers can give rise to multiple prion strains. Constrained interactions between PrPC and different PrPSc strains can in turn lead to certain PrPSc (sub)populations being selected for cross-species transmission, or even produce mutation-like events. By contrast, prion strains are generally conserved when transmitted within the same species, or to transgenic mice expressing homologous PrPC. Here, we compare the strain properties of a representative sheep scrapie isolate transmitted to a panel of transgenic mouse lines expressing varying levels of homologous PrPC. While breeding true in mice expressing PrPC at near physiological levels, scrapie prions evolve consistently towards different strain components in mice beyond a certain threshold of PrPC overexpression. Our results support the view that PrPC gene dosage can influence prion evolution on homotypic transmission.
Journal Article