Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
60
result(s) for
"Lauenroth, W.K."
Sort by:
Ecological responses of dominant grasses along two climatic gradients in the Great Plains of the United States
1996
Few empirical data exist to examine the influence of regional scale environmental gradients on productivity patterns of plant species. In this paper we analyzed the productivity of several dominant grass species along two climatic gradients, mean annual precipitation (MAP) and mean annual temperature (MAT), in the Great Plains of the United States. We used climatic data from 296 weather stations, species production data from Natural Resource Conservation Service rangeland surveys and a geographic information system to spatially integrate the data. Both MAP and MAT were significantly related to annual above-ground net primary production (ANPP). MAP explained 54 % to 89 % of the variation in ANPP of two C4 short-grasses, Bouteloua gracilis and Buchloë dactyloides, and two C4 tall-grasses, Andropogon gerardii and Schizachyrium scoparium (= Andropogon scoparius). MAT explained 19 % to 41 % of the variation in ANPP of two C4 grasses, B. gracilis and B. dactyloides, and 41 % to 66 % of the variation in ANPP of two C3 grasses, Agropyron smithii and Stipa comata. ANPP patterns for species along both gradients were described by either linear, negative exponential, logistic, normal or skewed curves. Patterns of absolute ANPP (g/m2) for species differed from those of relative ANPP (%) along the MAP gradient. Responses were similar for species with common functional characteristics (e.g. short-grasses, tall-grasses, C3, C4). Our empirical results support asymmetric responses of species to environmental gradients. Results demonstrate the importance of species attributes, type of environmental gradient and measure of species importance (relative or absolute productivity) in evaluating ecological response patterns.
Journal Article
Functional traits of graminoids in semi-arid steppes: a test of grazing histories
by
Milchunas, D.G
,
Burke, I.C
,
Adler, P.B
in
Animal, plant and microbial ecology
,
Applied ecology
,
avoidance
2004
1. Understanding variability in ecosystem response to grazing is essential for improving management. Recent efforts have focused on the role of plant functional traits but do not identify factors influencing trait development. As traits are legacies of historical selective pressures, they may indicate the importance of a plant community's evolutionary history of grazing. 2. We compared grazing-resistance traits of graminoids collected in the Patagonian steppe of Argentina, presumed to have a long evolutionary history of grazing, and the sagebrush steppe of the north-western USA, known to have a short grazing history. The purpose of this comparison was to test the influence of grazing history and aridity on resistance traits, and to generate predictions about the vulnerability of these ecosystems to grazing impacts. We measured both morphology and leaf chemical composition on common species from an arid and a semi-arid site in each region, then performed a principal components analysis on the species-by-traits matrix. 3. The first axis of the ordination was correlated with measures of forage quality such as leaf tensile strength, fibre and nitrogen content, while the second axis was correlated with plant stature. The dominant species from the drier Patagonia site scored significantly lower on the first axis (lower forage quality) than dominants from the sagebrush steppe. Plants from the wetter Patagonia site were intermediate in forage quality. Sagebrush steppe species scored significantly higher on the second axis (taller) but this difference was not significant when we considered only dominant species. 4. The intercontinental differences in plant traits are consistent with evidence indicating a longer evolutionary history of grazing in Patagonia. Differences in traits between the dry and wet sites in Patagonia are consistent with the hypothesis that aridity promotes grazing resistance, although trait contrasts between the drier and wetter sagebrush sites were not significant. 5. Differences in soil texture, which may influence nitrogen availability, offer an alternative explanation for differences in forage quality between Patagonia and sagebrush steppe, and between the drier and wetter sites within Patagonia. 6. Synthesis and applications. Our comparison of plant traits suggests that interactions between evolutionary history of grazing and abiotic covariates, especially soil texture, have selected for low forage quality in Patagonia relative to sagebrush steppe. This contrast in grazing-resistance traits leads to the prediction that livestock grazing will have less impact on upland plant communities in Patagonian steppe compared with the sagebrush steppe of the USA, particularly if low nitrogen content limits offtake. Plant functional traits represent an easily quantified link between evolutionary grazing history and ecosystem responses to contemporary management.
Journal Article
Evidence for a general species-time-area relationship
by
White, Ethan P.
,
Adler, Peter B.
,
Rassweiler, Andrew
in
Animal and plant ecology
,
animal ecology
,
Animal, plant and microbial ecology
2005
The species-area relationship (SAR) plays a central role in biodiversity research, and recent work has increased awareness of its temporal analogue, the species-time relationship (STR). Here we provide evidence for a general species-time-area relationship (STAR), in which species number is a function of the area and time span of sampling, as well as their interaction. For eight assemblages, ranging from lake zooplankton to desert rodents, this model outperformed a sampling-based model and two simpler models in which area and time had independent effects. In every case, the interaction term was negative, meaning that rates of species accumulation in space decreased with the time span of sampling, while species accumulation rates in time decreased with area sampled. Although questions remain about its precise functional form, the STAR provides a tool for scaling species richness across time and space, for comparing the relative rates of species turnover in space and time at different scales of sampling, and for rigorous testing of mechanisms proposed to drive community dynamics. Our results show that the SAR and STR are not separate relationships but two dimensions of one unified pattern.
Journal Article
ANPP estimates from NDVI for the central grassland region of the United States
by
Paruelo, José M.
,
Burke, Ingrid C.
,
Epstein, Howard E.
in
absorbed photosynthetic active radiation
,
Advanced very high resolution radiometers
,
Animal, plant and microbial ecology
1997
Several studies have suggested the existence of a positive relationship between the Normalized Difference Vegetation Index (NDVI) derived from AVHRR/NOAA satellite data and either biomass or annual aboveground net primary production (ANPP) for different geographic areas and ecosystems. We calibrated a 4-yr average of the ingegral of the NDVI (NDVI-I) using spatially aggregated values of ANPP. We also provided an estimate of the energy conversion efficiency coefficient (ε) of Monteith's equation. This is the first attempt to calibrate a standard NDVI product for temperate perennial grasslands. We found a positive and statistically significant relationship between NDVI-I and ANPP for grassland areas with mean annual precipitation between 280 and 1150 mm, and mean annual temperature between 4⚬ and 20⚬ C. Depending on the method used to estimate the fraction of photosynthetic active radiation, the energy conversion officency coefficient was constant (0.24 g C/MJ), or varied across the precipitation gradient, from 0.10 g C/MJ for the least productive to 0.20 g C/MJ for the most productive sites.
Journal Article
Plant traits and ecosystem grazing effects: comparison of U.S. sagebrush steppe and Patagonian steppe
by
Milchunas, Daniel G.
,
Burke, Ingrid C.
,
Adler, Peter B.
in
Applied ecology
,
Argentina
,
arid zones
2005
Plant functional traits provide one tool for predicting the effects of grazing on different ecosystems. To test this approach, we compared plant traits and grazing response across analogous climatic gradients in sagebrush steppe, USA (SGBR), known to have a short evolutionary history of grazing, and Patagonian steppe, Argentina (PAT), where generalist herbivores exerted stronger selective pressures. We measured grazing response by sampling vegetation and soils across distance-from-water gradients at arid, semiarid, and subhumid study areas in both regions. Based on a previous analysis of graminoid traits, we predicted that: (1) high forage quality in all three SGBR communities would lead to high utilization and large grazing effects, whereas low quality in arid PAT would constrain utilization and grazing impacts, with semiarid and subhumid PAT intermediate in quality and grazing response; and (2) grazing in arid PAT would cause shifts in relative abundance within the graminoid functional group, due to the large range of forage quality among graminoids, but in SGBR, where all graminoids are relatively palatable, shifts in abundance would occur between grasses and shrubs. Utilization in locations close to water was higher in SGBR than in PAT study areas. This utilization difference led to differences in grazing effects consistent with our first prediction. Abundance of graminoids increased with distance from water in all three SGBR communities and in subhumid PAT, but not in arid PAT. Shrub and total production decreased with distance in SGBR but not PAT study areas. Grazing variables explained less variation in species composition in arid PAT (43%) than in any other study area (59-74%). Grazing did not significantly influence species richness. Evidence for our second prediction was mixed. Grazing did alter the relative abundance of SGBR graminoids and shrubs, but abundance shifts among the graminoids in SGBR communities were larger than in PAT communities, counter to our prediction. This case study demonstrates how plant traits can explain relative effects of grazing on ecosystem structure and functioning, although predicting species-specific responses remains a challenge. Regardless of their evolutionary origin, poor-quality graminoids make the arid Patagonian steppe more resistant to overgrazing than communities dominated by more nutritious species.
Journal Article
Regional and temporal variation in net primary production and nitrogen mineralization in grasslands
by
Parton, William J.
,
Lauenroth, William K.
,
Burke, Ingrid C.
in
biomasa
,
biomass
,
biomass production
1997
Spatial variability that occurs at large scales has long been used by ecologists as a tool to examine the controls over ecosystem structure and function. Correlations of control variables such as climatic factors and response variables such as vegetation and soil carbon storage across broad regions have played a crucial role in predicting the response of ecosystems to global climate change. Despite the importance of these large-scale space-for-time substitutions, there are substantial limitations. One of these limitations is that many of the possible control factors covary with one another, and only some of the important control factors actually exist in large-scale databases. Thus, the true proximal controls may be difficult to identify. A second limitation is that models of spatial variability may not be appropriately applied to temporal variability. In this paper, we utilize a new approach to determine the extent to which N availability may constrain aboveground primary productivity in the Central Grassland region of the U.S. The strong relationship between average annual primary production and average annual precipitation found in spatial patterns in ecosystems globally has often been interpreted as evidence of a fundamental water limitation. However, temporal variation in annual aboveground net primary production (ANPP) indicates that other factors constrain production. We generated a spatial and temporal database for annual aboveground net primary production and annual net N mineralization by linking a database of input variables (precipitation, temperature, and soils) with predictive models. We generated independent data sets of aboveground net primary production and net N mineralization by using regression models to predict aboveground net primary production, and the Century model to simulate net N mineralization. Our analyses indicate that net primary production and net N mineralization both increase with mean annual precipitation; thus, it is not possible to separate the extent to which ANPP is controlled by water or N availability. Nitrogen use efficiency (NUE) increased with increasing precipitation across the region. Aboveground net primary production decreased with increasing temperature across the region, while N mineralization increased slightly, leading to decreasing (NUE) with increasing temperature. At high precipitation levels, aboveground net primary production increased and N mineralization decreased slightly with increasing soil fineness. Nitrogen use efficiency generally increased with increasing pools of soil organic matter, likely because in grasslands, the proportion of recalcitrant organic matter increases with the total organic matter pools. A comparison of interannual variation in net N mineralization with average spatial variation indicated a high degree of inertia in the response of N availability to precipitation levels. Our simulation results as well as field results of Lauenroth and Sala (1992) raise important questions about the applicability of space-for-time substitutions when dealing with ecosystem function. The structure of the systems appears to provide important constraints on the temporal variability that are not evident in an analysis of spatial variability.
Journal Article
Regional patterns in carbon cycling across the Great Plains of North America
by
McCulley, R.L
,
Burke, I.C
,
Kelly, E.F
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
Annual variations
2005
The large organic carbon (C) pools found in noncultivated grassland soils suggest that historically these ecosystems have had high rates of C sequestration. Changes in the soil C pool over time are a function of alterations in C input and output rates. Across the Great Plains and at individual sites through time, inputs of C (via aboveground production) are correlated with precipitation; however, regional trends in C outputs and the sensitivity of these C fluxes to annual variability in precipitation are less well known. To address the role of precipitation in controlling grassland C fluxes, and thereby soil C sequestration rates, we measured aboveground and belowground net primary production (ANPP-C and BNPP-C), soil respiration (SR-C), and litter decomposition rates for 2 years, a relatively dry year followed by a year of average precipitation, at five sites spanning a precipitation gradient in the Great Plains. ANPP-C, SR-C, and litter decomposition increased from shortgrass steppe (36, 454, and 24 g C${\\rm m}^{-2}\\ {\\rm y}^{-1}$) to tallgrass prairie (180, 1221, and 208 g C${\\rm m}^{-2}\\ {\\rm y}^{-1}$for ANPP-C, SR-C, and litter decomposition, respectively). No significant regional trend in BNPP-C was found. Increasing precipitation between years increased rates of ANPP-C, BNPP-C, SR-C, and litter decomposition at most sites. However, regional patterns of the sensitivity of ANPP-C, BNPP-C, SR-C, and litter decomposition to between-year differences in precipitation varied. BNPP-C was more sensitive to between-year differences in precipitation than were the other C fluxes, and shortgrass steppe was more responsive than were mixed grass and tallgrass prairie.
Journal Article
Production and rain use efficiency in short-grass steppe: grazing history, defoliation and water resource
by
Milchunas, D.G.
,
Lauenroth, W.K.
,
Varnamkhasti, A.S.
in
biomass production
,
Clipping
,
COLORADO
1995
Grassland in the semiarid shortgrass steppe, subjected to 50 years of heavy, light, and no grazing intensity, was clipped to simulate the natural pattern and intensities of defoliation by cattle or not clipped. A level of water resource treatment was superimposed upon the grazing and clipping treatments. Half of the plots were supplemented with additional water to simulate a wet year and half were not supplemented in a year of average precipitation. All three treatments interactively determined above-ground production. Water treatment had the largest overall effect on above-ground production. Current-year defoliation had no direct significant effect on production, but mediated differences between both longterm grazing and watering treatments. Long-term ungrazed compared to grazed grassland was capable of responding to high amounts of precipitation, but was also most affected by low amounts of precipitation and, therefore, displayed greater variability in above-ground production and rain use efficiency. Only in the year of average precipitation, defoliation increased rain use efficiency in long-term lightly, but not heavily, grazed treatment. This suggests a water conservation mechanism of defoliation that is reduced with heavy grazing.
Journal Article
Differential water resource use by herbaceous and woody plant life-forms in a shortgrass steppe community
by
Dodd, M.B
,
Welker, J.M
,
Lauenroth, W.K
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
Biological and medical sciences
1998
We conducted a study to test the predictions of Walter's two-layer model in the shortgrass steppe of northeastern Colorado. The model suggests that grasses and woody plants use water resources from different layers of the soil profile. Four plant removal treatments were applied in the spring of 1996 within a plant community codominated by Atriplex canescens (a C₄ shrub) and Bouteloua gracilis (a C₄ grass). During the subsequent growing season, soil water content was monitored to a depth of 180 cm. In addition, stem and leaf tissue of Atriplex, Bouteloua and the streamside tree Populus sargentii were collected monthly during the growing seasons of 1995 and 1996 for analysis of the δ18O value of plant stem water (for comparison with potential water sources) and the δ13C value of leaves (as an indicator of plant water status). Selective removal of shrubs did not significantly increase water storage at any depth in the measured soil profile. Selective removal of the herbaceous understory (mainly grasses) increased water storage in the top 60 cm of the soil. Some of this water gradually percolated to lower layers, where it was utilized by the shrubs. Based on stem water δ18O values, grasses were exclusively using spring and summer rain extracted from the uppermost soil layers. In contrast, trees were exclusively using groundwater, and the consistent δ13C values of tree leaves over the course of the summer indicated no seasonal changes in gas exchange and therefore minimal water stress in this life-form. Based on anecdotal rooting-depth information and initial measurements of stem water δ18O, shrubs may have also had access to groundwater. However, their overall δ18O values indicated that they mainly used water from spring and summer precipitation events, extracted from subsurface soil layers. These findings indicate that the diversity of life-forms found in this shortgrass steppe community may be a function of the spatial partitioning of soil water resources, and their differential use by grasses, shrubs, and trees. Consequently, our findings support the two-layer model in a broad sense, but indicate a relatively flexible strategy of water acquisition by shrubs.
Journal Article
Livestock grazing: animal and plant biodiversity of shortgrass steppe and the relationship to ecosystem function
by
Milchunas, D.G
,
Burke, I.C
,
Lauenroth, W.K. (Colorado State Univ., Fort Collins (USA))
in
AMERICA DEL NORTE
,
AMERIQUE DU NORD
,
Animal and plant ecology
1998
We synthesized published and unpublished data from long-term grazing treatments in North American shortgrass steppe on diversity and abundance of plants, lagomorphs, rodents, birds, aboveground and belowground macroarthropods, microarthropods, and nematodes. The relatively small response of the plant community to grazing provides an opportunity to address some broad questions concerning relationships among responses of structural and functional aspects of systems in general. Are there consistencies in diversity and abundance responses to grazing among groups of organisms? Are some groups more sensitive than others, or do responses mirror that of vegetation? Are the responses in terms of biodiversity related to ecosystem-level functional responses? Diversity, abundance, dominance, and dissimilarity responses to long-term grazing were highly variable across classes of organisms. Some groups of consumers displayed large differences among treatments even though differences in plant community attributes were relatively minor. Some responses were large even when comparing ungrazed to lightly or lightly to moderately grazed treatments. Birds appear to be particularly responsive to grazing. Differences among treatments in richness within groups other than plants and birds were relatively minor, especially when compared to large declines in abundance of some groups with increasing grazing intensity. For the well-studied groups (plants and birds), shifts in species in terms of 'quality' factors, such as exotic, endemic, and rare, generally suggest that livestock grazing may be more similar to conditions in recent evolutionary time in this particular system than would conditions resulting from the removal of the exotic, domestic grazers that appear to functionally serve as a surrogate to bison. Trophic structure composition did not vary greatly across grazing treatments. Further, large effects of grazing on some consumer groups did not translate into similarly large effects on ecosystem processes such as primary production or soil nutrient pools and cycling rates.
Journal Article