Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3
result(s) for
"Laugié, Marie"
Sort by:
Global distribution of modern shallow-water marine carbonate factories: a spatial model based on environmental parameters
2019
Prediction of carbonate distributions at a global scale through geological time represents a challenging scientific issue, which is critical for carbonate reservoir studies and the understanding of past and future climate changes. Such prediction is even more challenging because no numerical spatial model allows for the prediction of shallow-water marine carbonates in the Modern. This study proposes to fill this gap by providing for the first time a global quantitative model based on the identification of carbonate factories and associated environmental affinities. The relationships among the four carbonate factories, i.e., “biochemical”, “photozoan-T”, “photo-C” and “heterozoan-C” factories, and sea-surface oceanographic parameters (i.e., temperature, salinity and marine primary productivity) is first studied using spatial analysis. The sea-surface temperature seasonality is shown to be the dominant steering parameter discriminating the carbonate factories. Then, spatial analysis is used to calibrate different carbonate factory functions that predict oceanic zones favorable to specific carbonate factories. Our model allows the mapping of the global distribution of modern carbonate factories with an 82% accuracy. This modeling framework represents a powerful tool that can be adapted and coupled to general circulation models to predict the spatial distribution of past and future shallow-water marine carbonates.
Journal Article
Neogene South Asian monsoon rainfall and wind histories diverged due to topographic effects
by
Ladant, Jean-Baptiste
,
Bolton, Clara T.
,
Fluteau, Frédéric
in
704/106/2738
,
704/106/413
,
Archives & records
2022
The drivers of the evolution of the South Asian Monsoon remain widely debated. An intensification of monsoonal rainfall recorded in terrestrial and marine sediment archives from the earliest Miocene (23–20 million years ago (Ma)) is generally attributed to Himalayan uplift. However, Indian Ocean palaeorecords place the onset of a strong monsoon around 13 Ma, linked to strengthening of the southwesterly winds of the Somali Jet that also force Arabian Sea upwelling. Here we reconcile these divergent records using Earth system model simulations to evaluate the interactions between palaeogeography and ocean–atmosphere dynamics. We show that factors forcing the South Asian Monsoon circulation versus rainfall are decoupled and diachronous. Himalayan and Tibetan Plateau topography predominantly controlled early Miocene rainfall patterns, with limited impact on ocean–atmosphere circulation. The uplift of the East African and Middle Eastern topography played a pivotal role in the establishment of the modern Somali Jet structure above the western Indian Ocean, while strong upwelling initiated as a direct consequence of the emergence of the Arabian Peninsula and the onset of modern-like atmospheric circulation. Our results emphasize that although elevated rainfall seasonality was probably a persistent feature since the India–Asia collision in the Paleogene, modern-like monsoonal atmospheric circulation only emerged in the late Neogene.
A modern-like South Asian Monsoon only appeared when East African and Middle Eastern uplift led to the establishment of the Somali Jet around 13 million years ago, according to Earth system modelling using a range of regional palaeogeographies.
Journal Article
Stripping back the modern to reveal the Cenomanian–Turonian climate and temperature gradient underneath
by
Green, J. A. Mattias
,
Ladant, Jean-Baptiste
,
Raisson, François
in
Boundary conditions
,
Carbon
,
Carbon cycle
2020
During past geological times, the Earth experienced several intervals of global warmth, but their driving factors remain equivocal. A careful appraisal of the main processes controlling past warm events is essential to inform future climates and ultimately provide decision makers with a clear understanding of the processes at play in a warmer world. In this context, intervals of greenhouse climates, such as the thermal maximum of the Cenomanian–Turonian (∼94 Ma) during the Cretaceous Period, are of particular interest. Here we use the IPSL-CM5A2 (IPSL: Institut Pierre et Simon Laplace) Earth system model to unravel the forcing parameters of the Cenomanian–Turonian greenhouse climate. We perform six simulations with an incremental change in five major boundary conditions in order to isolate their respective role on climate change between the Cenomanian–Turonian and the preindustrial. Starting with a preindustrial simulation, we implement the following changes in boundary conditions: (1) the absence of polar ice sheets, (2) the increase in atmospheric pCO2 to 1120 ppm, (3) the change in vegetation and soil parameters, (4) the 1 % decrease in the Cenomanian–Turonian value of the solar constant and (5) the Cenomanian–Turonian palaeogeography. Between the preindustrial simulation and the Cretaceous simulation, the model simulates a global warming of more than 11 ∘C. Most of this warming is driven by the increase in atmospheric pCO2 to 1120 ppm. Palaeogeographic changes represent the second major contributor to global warming, whereas the reduction in the solar constant counteracts most of geographically driven warming. We further demonstrate that the implementation of Cenomanian–Turonian boundary conditions flattens meridional temperature gradients compared to the preindustrial simulation. Interestingly, we show that palaeogeography is the major driver of the flattening in the low latitudes to midlatitudes, whereas pCO2 rise and polar ice sheet retreat dominate the high-latitude response.
Journal Article