Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "Lauren, J.G. (Cornell Univ., Ithaca, NY (USA). Dept. of Soil Crop and Atmospheric Sciences)"
Sort by:
Methane emissions associated with a green manure amendment to flooded rice in California
The goals of sustainable food production and mitigation of greenhouse gas emissions may be in conflict when green manures are used in flooded rice systems. A field study was initiated in early spring 1992 near Sacramento, California to quantify the potential for enhanced methane emissions following a green manure amendment to rice. Replicate flux measurements were made twice a day every 3-4 days throughout the growing season in four treatment plots: burned rice straw, spring incorporated rice straw, burned straw plus purple vetch and spring incorporated straw plus vetch. Seasonal methane emissions ranged from 66-136 g CH4 m-2 and were 1.5 to 1.8 times higher from the straw plus vetch treatments relative to the straw only treatments. No significant differences in emissions were found between the two straw only treatments or the straw plus vetch treatments. Methane fluxes were exponentially related to soil temperature, but no effect of redox potential or floodwater depth were observed. The potential impact of these results on the global methane budget is discussed.