Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
462 result(s) for "Laurendeau, S."
Sort by:
Transatlantic spread of highly pathogenic avian influenza H5N1 by wild birds from Europe to North America in 2021
Highly pathogenic avian influenza (HPAI) viruses of the A/Goose/Guangdong/1/1996 lineage (GsGd), which threaten the health of poultry, wildlife and humans, are spreading across Asia, Europe, Africa and North America but are currently absent from South America and Oceania. In December 2021, H5N1 HPAI viruses were detected in poultry and a free-living gull in St. John’s, Newfoundland and Labrador, Canada. Our phylogenetic analysis showed that these viruses were most closely related to HPAI GsGd viruses circulating in northwestern Europe in spring 2021. Our analysis of wild bird migration suggested that these viruses may have been carried across the Atlantic via Iceland, Greenland/Arctic or pelagic routes. The here documented incursion of HPAI GsGd viruses into North America raises concern for further virus spread across the Americas by wild bird migration.
Transatlantic spread of highly pathogenic avian influenza H5N1 by wild birds from Europe to North America in 2021
Highly pathogenic avian influenza (HPAI) viruses of the A/Goose/Guangdong/1/1996 lineage (GsGd), which threaten the health of poultry, wildlife and humans, are spreading across Asia, Europe and Africa, but are currently absent from Oceania and the Americas. In December 2021, H5N1 HPAI viruses were detected in poultry and a free-living gull in St. John, Newfoundland and Labrador, Canada. Phylogenetic analysis showed that these viruses were most closely related to HPAI GsGd viruses circulating in northwestern Europe in spring 2021. Analysis of wild bird migration suggested that these viruses may have been carried across the Atlantic via Iceland, Greenland/Arctic or pelagic routes. The here documented incursion of HPAI GsGd viruses into North America raises concern for further virus spread across the Americas by wild bird migration. Competing Interest Statement The authors have declared no competing interest.
Link between subsonic stall and transonic buffet on swept and unswept wings: from global stability analysis to nonlinear dynamics
This paper examines the three-dimensional cellular patterns appearing on wings in subsonic stall and transonic buffet conditions. Unsteady Reynolds-averaged Navier–Stokes simulations are carried out for three-dimensional infinite swept configurations closed by periodic boundary conditions in the spanwise direction. In both flow conditions the occurrence of stall/buffet cells is observed, as well as their convection at a speed proportional to the sweep angle. In transonic buffet conditions, this phenomenon is superimposed to the well-documented two-dimensional buffet instability. These results indicate that the discrepancies between two-dimensional and three-dimensional buffet are caused by the occurrence of buffet cells and that this phenomenon is similar to the one observed at low speed. These phenomena are then studied using global linear stability analysis with the assumption of a periodic flow in the spanwise direction. From these analyses a mode coherent with the two-dimensional buffet is obtained, as well as a mode coherent with two-dimensional vortex shedding in stall conditions. In addition, in both flow conditions an unstable mode reminiscent of stall/buffet cells is observed.
Supercycle at the Ecuadorian subduction zone revealed after the 2016 Pedernales earthquake
Large earthquakes are usually assumed to release all of the strain accumulated since the previous event, implying a reduced seismic hazard after them. However, long records of seismic history at several subduction zones suggest supercycle behaviour, where centuries-long accumulated strain is released through clustered large earthquakes, resulting in an extended period of enhanced seismic hazard. Here we combine historical seismology results, present-day geodesy data, and dense local observations of the recent M w 7.8 2016 Pedernales earthquake to reconstruct the strain budget at the Ecuador subduction zone since the great 1906 earthquake. We show that the Pedernales earthquake involved the successive rupture of two patches on the plate interface that were locked prior to the earthquake and most probably overlaps the area already ruptured in 1942 by a similar earthquake. However, we find that coseismic slip in 2016 exceeds the deficit accumulated since 1942. The seismic moment of every large earthquake during the twentieth century further exceeds the moment deficit accumulated since 1906. These results, together with the seismic quiescence before 1906 highlighted by historical records and marine palaeoseismology, argue for an earthquake supercycle at the Ecuador–Colombia margin. This behaviour, which has led to an enhanced seismic hazard for 110 years, is possibly still going on and may apply to other subduction zones that recently experienced a great earthquake. Large earthquakes are often assumed to reset the seismic hazard of a region. Analysis of recent and historical seismicity in Ecuador suggests that this region may experience clusters of large earthquakes and extended periods of high seismic hazard.
Learning aerodynamics with neural network
We propose a neural network (NN) architecture, the Element Spatial Convolution Neural Network (ESCNN), towards the airfoil lift coefficient prediction task. The ESCNN outperforms existing state-of-the-art NNs in terms of prediction accuracy, with two orders of less parameters. We further investigate and explain how the ESCNN succeeds in making accurate predictions with standard convolution layers. We discover that the ESCNN has the ability to extract physical patterns that emerge from aerodynamics, and such patterns are clearly reflected within a layer of the network. We show that the ESCNN is capable of learning the physical laws and equation of aerodynamics from simulation data.
Multiple Cylinder Extraction from Organized Point Clouds
Most man-made objects are composed of a few basic geometric primitives (GPs) such as spheres, cylinders, planes, ellipsoids, or cones. Thus, the object recognition problem can be considered as one of geometric primitives extraction. Among the different geometric primitives, cylinders are the most frequently used GPs in real-world scenes. Therefore, cylinder detection and extraction are of great importance in 3D computer vision. Despite the rapid progress of cylinder detection algorithms, there are still two open problems in this area. First, a robust strategy is needed for the initial sample selection component of the cylinder extraction module. Second, detecting multiple cylinders simultaneously has not yet been investigated in depth. In this paper, a robust solution is provided to address these problems. The proposed solution is divided into three sub-modules. The first sub-module is a fast and accurate normal vector estimation algorithm from raw depth images. With the estimation method, a closed-form solution is provided for computing the normal vector at each point. The second sub-module benefits from the maximally stable extremal regions (MSER) feature detector to simultaneously detect cylinders present in the scene. Finally, the detected cylinders are extracted using the proposed cylinder extraction algorithm. Quantitative and qualitative results show that the proposed algorithm outperforms the baseline algorithms in each of the following areas: normal estimation, cylinder detection, and cylinder extraction.
Calibration of Stereo Pairs Using Speckle Metrology
The accuracy of 3D reconstruction for metrology applications using active stereo pairs depends on the quality of the calibration of the system. Active stereo pairs are generally composed of cameras mounted on tilt/pan mechanisms separated by a constant or variable baseline. This paper presents a calibration approach based on speckle metrology that allows the separation of translation and rotation in the estimation of extrinsic parameters. To achieve speckle-based calibration, a device called an Almost Punctual Speckle Source (APSS) is introduced. Using the APSS, a thorough method for the calibration of extrinsic parameters of stereo pairs is described. Experimental results obtained with a stereo system called the Agile Stereo Pair (ASP) demonstrate that speckle-based calibration achieves better reconstruction performance than methods using standard calibration procedures. Although the experiments were performed with a specific stereo pair, such as the ASP, which is described in the paper, the speckle-based calibration approach using the APSS can be transposed to other stereo setups.
An attempt at modeling COPD epidemiological trends in France
Background Anticipating the future burden of chronic obstructive pulmonary disease (COPD) is required to develop adequate public health policies. Methods A dynamic population model was built to estimate COPD prevalence by 2025 using data collected during the most recent large general population study on COPD prevalence in France (2005) as baseline values. Sensitivity analyses were performed to test the effect of variations in key input variables. Results The model predicted a steady increase in crude COPD prevalence among subjects aged≥45 years from 2005 (prevalence estimate: 84.51‰) to 2025 (projected prevalence: 95.76‰, + 0.56‰/yr). There was a 4-fold increase in the prevalence of GOLD grade 3–4 cases, a 23% relative increase in women and a 21% relative increase in subjects ≥75 years. In sensitivity analyses, these temporal trends were robust. Factors associated with > 5% relative variations in projected 2025 prevalence estimates were baseline prevalence and severity distribution, incidence in women and severity of incident cases, transition rates between severity grades, and mortality. Conclusions Projections of future COPD epidemiology consistently predict an increase in the prevalence of moderate-to-very severe COPD, especially due to increases among women and subjects aged ≥75 years. Developing robust prediction models requires collecting reliable data on current COPD epidemiology.
Are the Standard VS-Kappa Host-to-Target Adjustments the Only Way to Get Consistent Hard-Rock Ground Motion Prediction?
Site-specific seismic hazard studies involving detailed account of the site response require the prior estimate of the hazard at the local reference bedrock level. As the real characteristics of such local bedrock often correspond to “hard-rock” with S-wave velocity exceeding 1.5 km/s, “standard rock” PSHA estimates should be adjusted in order to replace the effects of “standard-rock” characteristics by those corresponding to the local bedrock. The current practice involves the computation of scaling factors determined on the basis of VS (S-wave velocity) and “κ0” (site specific, high-frequency attenuation parameter) values, and generally predicts larger high-frequency motion on hard rock compared to standard rock. However, it also proves to be affected by large uncertainties (Biro and Renault, Proceedings of the 15th world conference on earthquake engineering, 24–28, 2012; Al Atik et al., Bull Seism Soc Am 104(1):336–346 2014), mainly attributed to (i) the measurement of host and target parameters, and (ii) the forward and inverse conversions from the response spectrum domain to the Fourier domain to apply the VS and κ0 adjustments. Moreover, recent studies (Ktenidou and Abrahamson, Seismol Res Lett 87(6):1465–1478, 2016) question the appropriateness of current VS − κ0 scaling factors, so that the significant amplification of high frequency content for hard-rock with respect to standard-rock seems overestimated. This paper discusses the key aspects of a few, recently proposed, alternatives to the standard approach. The calibration of GMPEs directly in the Fourier domain rather than in the response spectrum domain is one possibility (Bora et al., Bull Seism Soc Am 105(4):2192–2218, 2015, Bull Earthq Eng 15(11):4531–4561, 2017). Another possibility is the derivation of GMPEs which be valid also for hard-rock conditions (e.g. Laurendeau et al., Bull Earthq Eng 16(6):2253–2284, 2018). In this latter case the host site response is first removed using theoretical site response analyses (and site velocity profile), or generalized inversions techniques. A third possibility is to use existing hard rock surface recordings to derive purely empirical scaling models from standard rock to hard rock (Ktenidou et al., PEER Report, Pacific Earthquake Engineering Research Center, Berkeley, 2016). Finally, when a sufficient amount of records are available at a given site, generic GMPEs can be scaled to the site-specific ground motion using empirical site residual (δS2Ss) (Kotha et al., Earthq Spectra 33(4):1433–1453, 2017; Ktenidou et al., Bulletin of Earthquake Engineering 16(6):2311–2336, 2018). Such alternative approaches present the advantage of a significant simplification with respect to the current practice (with thus a reduced number of uncertainty sources); their generalization calls however for high-quality recordings (including high-quality site metadata) for both host regions and target sites, especially for small to moderate magnitude events. Our answer to the question in the title is thus “No, alternative approaches exist and are promising; though, their routine implementation requires additional work regarding systematic site characterization (for the host regions) and high-quality site characterization/instrumentation (for the target site), and so do also the needed improvements of the existing HTTA procedure”.
\He didn't Go in Doing A Skydive\: Sustaining the Illusion of Control in an Edgework Activity
Exploring Lyng's notion of \"edgework,\" this article draws on ethnographic data to explore the ways skydivers create and sustain the belief that they can maintain control while working the \"edge\" in this sport. The article focuses on the ways skydivers construct and maintain the \"illusion\" that they can exercise control as they negotiate their particular edge. It elaborates the ways this sense of control is constructed and the extent to which it informs the ways risk recreators approach the edge. In the choices jumpers make about how they participate in the sport and the ways they interpret the experiences of themselves and other jumpers, they defend the position that their hazardous environments are within their control. When this position becomes untenable, they often draw on the notion of fate to construct certain hazards as outside of the sport, thereby sustaining their sense of control.