Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
24
result(s) for
"Lautwein, Tobias"
Sort by:
Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis
by
Hartlehnert, Maike
,
Heming, Michael
,
Kuhlmann, Tanja
in
49/91
,
631/250/1619/554/1898/1270
,
631/250/38
2020
Cerebrospinal fluid (CSF) protects the central nervous system (CNS) and analyzing CSF aids the diagnosis of CNS diseases, but our understanding of CSF leukocytes remains superficial. Here, using single cell transcriptomics, we identify a specific location-associated composition and transcriptome of CSF leukocytes. Multiple sclerosis (MS) – an autoimmune disease of the CNS – increases transcriptional diversity in blood, but increases cell type diversity in CSF including a higher abundance of cytotoxic phenotype T helper cells. An analytical approach, named cell set enrichment analysis (CSEA) identifies a cluster-independent increase of follicular (TFH) cells potentially driving the known expansion of B lineage cells in the CSF in MS. In mice, TFH cells accordingly promote B cell infiltration into the CNS and the severity of MS animal models. Immune mechanisms in MS are thus highly compartmentalized and indicate ongoing local T/B cell interaction.
Here the authors provide a single-cell characterization of cerebrospinal fluid and blood of newly diagnosed multiple sclerosis (MS) patients, revealing altered composition of lymphocyte and monocyte subsets, validated by other methods including the interrogation of the TFH subset in mouse models of MS.
Journal Article
IL-6 in the infarcted heart is preferentially formed by fibroblasts and modulated by purinergic signaling
by
Lautwein, Tobias
,
Alter, Christina
,
Bahr, Jasmin
in
Adenosine
,
Adenosine - metabolism
,
Analysis
2023
Plasma IL-6 is elevated after myocardial infarction (MI) and is associated with increased morbidity and mortality. Which cardiac cell type preferentially contributes to IL-6 expression and how its production is regulated are largely unknown. Here, we studied the cellular source and purinergic regulation of IL-6 formation in a murine MI model. We found that IL-6, measured in various cell types in post-MI hearts at the protein level and by quantitative PCR and RNAscope, was preferentially formed by cardiac fibroblasts (CFs). Single-cell RNA-Seq (scRNA-Seq) in infarcted mouse and human hearts confirmed this finding. We found that adenosine stimulated fibroblast IL-6 formation via the adenosine receptor A2bR in a Gq-dependent manner. CFs highly expressed Adora2b and rapidly degraded extracellular ATP to AMP but lacked CD73. In mice and humans, scRNA-Seq revealed that Adora2B was also mainly expressed by fibroblasts. We assessed global IL-6 production in isolated hearts from mice lacking CD73 on T cells (CD4-CD73-/-), a condition known to be associated with adverse cardiac remodeling. The ischemia-induced release of IL-6 was strongly attenuated in CD4-CD73-/- mice, suggesting adenosine-mediated modulation. Together, these findings demonstrate that post-MI IL-6 was mainly derived from activated CFs and was controlled by T cell-derived adenosine. We show that purinergic metabolic cooperation between CFs and T cells is a mechanism that modulates IL-6 formation by the heart and has therapeutic potential.
Journal Article
Single-cell transcriptomics defines heterogeneity of epicardial cells and fibroblasts within the infarcted murine heart
2021
In the adult heart, the epicardium becomes activated after injury, contributing to cardiac healing by secretion of paracrine factors. Here, we analyzed by single-cell RNA sequencing combined with RNA in situ hybridization and lineage tracing of Wilms tumor protein 1-positive (WT1 + ) cells, the cellular composition, location, and hierarchy of epicardial stromal cells (EpiSC) in comparison to activated myocardial fibroblasts/stromal cells in infarcted mouse hearts. We identified 11 transcriptionally distinct EpiSC populations, which can be classified into three groups, each containing a cluster of proliferating cells. Two groups expressed cardiac specification markers and sarcomeric proteins suggestive of cardiomyogenic potential. Transcripts of hypoxia-inducible factor (HIF)-1α and HIF-responsive genes were enriched in EpiSC consistent with an epicardial hypoxic niche. Expression of paracrine factors was not limited to WT1 + cells but was a general feature of activated cardiac stromal cells. Our findings provide the cellular framework by which myocardial ischemia may trigger in EpiSC the formation of cardioprotective/regenerative responses.
Journal Article
Intraocular dendritic cells characterize HLA-B27-associated acute anterior uveitis
by
Lautwein, Tobias
,
Meyer zu Hörste, Gerd
,
Meyer zu Horste, Melissa
in
Biomaterials
,
Cell interactions
,
Dendritic cells
2021
Uveitis describes a heterogeneous group of inflammatory eye diseases characterized by infiltration of leukocytes into the uveal tissues. Uveitis associated with the HLA haplotype B27 (HLA-B27) is a common subtype of uveitis and a prototypical ocular immune-mediated disease. Local immune mechanisms driving human uveitis are poorly characterized mainly due to the limited available biomaterial and subsequent technical limitations. Here, we provide the first high-resolution characterization of intraocular leukocytes in HLA-B27-positive (n = 4) and -negative (n = 2) anterior uveitis and an infectious endophthalmitis control (n = 1) by combining single-cell RNA-sequencing with flow cytometry and protein analysis. Ocular cell infiltrates consisted primarily of lymphocytes in both subtypes of uveitis and of myeloid cells in infectious endophthalmitis. HLA-B27-positive uveitis exclusively featured a plasmacytoid and classical dendritic cell (cDC) infiltrate. Moreover, cDCs were central in predicted local cell-cell communication. This suggests a unique pattern of ocular leukocyte infiltration in HLA-B27-positive uveitis with relevance to DCs. Uveitis is a form of inflammation in the eye. It can occur in response to infection, or when the immune system mistakenly attacks the eye, in what is known as autoimmune uveitis. In approximately 80 percent of cases, the front part of the eye is affected. During an inflammatory episode, the liquid inside the front part of the eye fills with immune cells, but the nature of these cells remains unknown. This is because uveitis is rare, and doctors cannot routinely take samples from inside the eyes of affected individuals to diagnose the disease. This lack of samples makes research into this disease challenging. There are two main groups of immune cells that could be responsible for uveitis: myeloid cells and lymphoid cells. Myeloid cells form the first line of immune defense against infection by non-specifically attacking and removing pathogens . Lymphoid cells form the second line of immune defense, attacking specific pathogens. Lymphoid cells also have long-term memory, meaning they can ‘remember’ previous infections and fight them more effectively. Lymphoid cells receive instructions from a type of myeloid cell called a dendritic cell about what to attack. Dendritic cells relay their instructions to lymphoid cells using molecules called human leukocyte antigens (HLA). Autoimmune uveitis affecting the front part of the eye is common in individuals with an HLA type called HLA-B27, suggesting that communication between dendritic and lymphoid cells plays an important role in this type of inflammation. To make the most of limited patient samples, Kasper et al. used single cell techniques to examine the immune cells from the fluid inside the eye. Six samples came from people with autoimmune uveitis, and one from a person with an eye infection. The infection sample contained mainly myeloid cells that might attack bacteria responsible for the infection. In contrast, the autoimmune uveitis samples contained mainly lymphoid cells. Of these samples, four were from individuals with the gene that codes for the HLA-B27 molecule. These samples had a unique pattern of immune cells, with more dendritic cells than the samples from individuals that did not have this gene. This study included only a small number of individuals, but it shows that analysing single immune cells from the eye is possible in uveitis. This snapshot could help researchers understand the local immune response in the eye, and find an optimal treatment.
Journal Article
Insulin-Like Growth Factor 1 Attenuates the Pro-Inflammatory Phenotype of Neutrophils in Myocardial Infarction
by
Nederlof, Rianne
,
Reidel, Sophia
,
Lautwein, Tobias
in
1-Phosphatidylinositol 3-kinase
,
AKT protein
,
Anti-Inflammatory Agents - metabolism
2022
Acute myocardial infarction (MI) induces an extensive sterile inflammation, which is dominated in the early phase by invading neutrophils and monocytes/macrophages. The inflammatory response after MI critically affects infarct healing and cardiac remodeling. Therefore, modulation of cardiac inflammation may improve outcome post MI. Insulin-like growth factor 1 (IGF1) treatment reduces infarct size and improves cardiac function after MI via IGF1 receptor mediated signaling in myeloid cells. Our study aimed to investigate the effect of IGF1 on neutrophil phenotype both in vitro and in vivo after MI. We show that IGF1 induces an anti-inflammatory phenotype in bone marrow derived neutrophils. On the molecular and functional level IGF1 treated neutrophils were indistinguishable from those induced by IL4. Surprisingly, insulin, even though it is highly similar to IGF1 did not create anti-inflammatory neutrophils. Notably, the IGF1 effect was independent of the canonical Ras/Raf/ERK or PI3K/AKT pathway, but depended on activation of the JAK2/STAT6 pathway, which was not activated by insulin treatment. Single cell sequencing analysis 3 days after MI also showed that 3 day IGF1 treatment caused a downregulation of pro-inflammatory genes and upstream regulators in most neutrophil and many macrophage cell clusters whereas anti-inflammatory genes and upstream regulators were upregulated. Thus, IGF1 acts like an anti-inflammatory cytokine on myeloid cells in vitro and attenuates the pro-inflammatory phenotype of neutrophils and macrophages in vivo after MI. IGF1 treatment might therefore represent an effective immune modulatory therapy to improve the outcome after MI.
Journal Article
Dysregulation of a specific immune-related network of genes biologically defines a subset of schizophrenia
2019
Currently, the clinical diagnosis of schizophrenia relies solely on self-reporting and clinical interview, and likely comprises heterogeneous biological subsets. Such subsets may be defined by an underlying biology leading to solid biomarkers. A transgenic rat model modestly overexpressing the full-length, non-mutant Disrupted-in-Schizophrenia 1 (DISC1) protein (tgDISC1 rat) was generated that defines such a subset, inspired by our previous identification of insoluble DISC1 protein in post mortem brains from patients with chronic mental illness. Besides specific phenotypes such as DISC1 protein pathology, abnormal dopamine homeostasis, and changes in neuroanatomy and behavior, this animal model also shows subtle disturbances in overarching signaling pathways relevant for schizophrenia. In a reverse-translational approach, assuming that both the animal model and a patient subset share common disturbed signaling pathways, we identified differentially expressed transcripts from peripheral blood mononuclear cells of tgDISC1 rats that revealed an interconnected set of dysregulated genes, led by decreased expression of regulator of G-protein signaling 1 (RGS1), chemokine (C–C) ligand 4 (CCL4), and other immune-related transcripts enriched in T-cell and macrophage signaling and converging in one module after weighted gene correlation network analysis. Testing expression of this gene network in two independent cohorts of patients with schizophrenia versus healthy controls (n = 16/50 and n = 54/45) demonstrated similar expression changes. The two top markers RGS1 and CCL4 defined a subset of 27% of patients with 97% specificity. Thus, analogous aberrant signaling pathways can be identified by a blood test in an animal model and a corresponding schizophrenia patient subset, suggesting that in this animal model tailored pharmacotherapies for this patient subset could be achieved.
Journal Article
Genomic Analysis of Aeromonas salmonicida ssp. salmonicida Isolates Collected During Multiple Clinical Outbreaks Supports Association with a Single Epidemiological Unit
by
Lautwein, Tobias
,
Palić, Dušan
,
Cholewińska, Paulina
in
Aeromonas salmonicida
,
Aeromonas salmonicida - genetics
,
Aeromonas salmonicida - immunology
2024
Outbreaks of furunculosis cause significant losses in salmonid aquaculture worldwide. With a recent rise in antimicrobial resistance, regulatory measures to minimize the use of antibiotics in animal husbandry, including aquaculture, have increased scrutiny and availability of veterinary medical products to control this disease in production facilities. In such a regulatory environment, the utility of autogenous vaccines to assist with disease prevention and control as a veterinary-guided prophylactic measure is of high interest to the producers and veterinary services alike. However, evolving concepts of epidemiological units and epidemiological links need to be considered during approval and acceptance procedures for the application of autogenous vaccines in multiple aquaculture facilities. Here, we present the results of solid-state nanopore sequencing (Oxford Nanopore Technologies, ONT) performed on 54 isolates of Aeromonas salmonicida ssp. salmonicida sampled during clinical outbreaks of furunculosis in different aquaculture facilities from Bavaria, Germany, from 2017 to 2020. All of the performed analyses (phylogeny, single nucleotide polymorphism and 3D protein modeling for major immunogenic proteins) support a high probability that all studied isolates belong to the same epidemiological unit. Simultaneously, we describe a cost/effective method of whole genome analysis with the usage of ONT as a viable strategy to study outbreaks of other pathogens in the field of aquatic veterinary medicine for the purpose of developing the best autogenous vaccine candidates applicable to multiple aquaculture establishments.
Journal Article
A secretome atlas of cardiac fibroblasts from healthy and infarcted mouse hearts
2025
Cardiac fibroblasts (CF) are key players after myocardial infarction (MI), but their signaling is only incompletely understood. Here we report a first secretome atlas of CF in control (cCF) and post-MI mouse hearts (miCF), combining a rapid cell isolation technique with SILAC and click chemistry. In CF, numerous paracrine factors involved in immune homeostasis are identified. Comparing secretome, transcriptome (SLAMseq), and cellular proteome disclose protein turnover. In miCF at day 5 post-MI, significantly upregulated proteins include SLIT2, FN1, and CRLF1 in mouse and human samples. Comparing the miCF secretome at days 3 and 5 post-MI reveals the dynamic nature of protein secretion. Specific in-vivo labeling of miCF proteins via biotin ligase TurboID using the POSTN promotor mirrors the in-vitro data. In summary, we identify numerous paracrine factors specifically secreted from CF in mice and humans. This secretome atlas may lead to new biomarkers and/or therapeutic targets for the activated CF.
Secretome analysis of infarct-activated cardiac fibroblasts reveals the dynamic secretion of numerous paracrine factors in cardiac healing; this secretome atlas might serve as resource for new diagnostic and therapeutic targets.
Journal Article
H1‐0 is a specific mediator of the repressive ETV6::RUNX1 transcriptional landscape in preleukemia and B cell acute lymphoblastic leukemia
2025
ETV6::RUNX1, the most common oncogenic fusion in pediatric B cell precursor acute lymphoblastic leukemia (BCP‐ALL), induces a clinically silent preleukemic state that can persist in carriers for over a decade and may progress to overt leukemia upon acquisition of secondary lesions. The mechanisms contributing to quiescence of ETV6::RUNX1+ preleukemic cells still remain elusive. In this study, we identify linker histone H1‐0 as a critical mediator of the ETV6::RUNX1+ preleukemic state by employing human ‐induced pluripotent stem cell (hiPSC) models engineered by using CRISPR/Cas9 gene editing. Global gene expression analysis revealed upregulation of H1‐0 in ETV6::RUNX1+ hiPSCs that was preserved upon hematopoietic differentiation. Moreover, whole transcriptome data of 1,727 leukemia patient samples showed significantly elevated H1‐0 levels in ETV6::RUNX1+ BCP‐ALL compared to other leukemia entities. Using dual‐luciferase promoter assays, we show that ETV6::RUNX1 induces H1‐0 promoter activity. We further demonstrate that depletion of H1‐0 specifically inhibits ETV6::RUNX1 signature genes, including RAG1 and EPOR. Single‐cell sequencing showed that H1‐0 is highly expressed in quiescent hematopoietic cells. Importantly, H1‐0 protein levels correspond to susceptibility of BCP‐ALL cells towards histone deacetylase inhibitors (HDACis) and combinatorial treatment using the H1‐0‐inducing HDACi Quisinostat showed promising synergism with established chemotherapeutic drugs. Taken together, our data identify H1‐0 as a key regulator of the ETV6::RUNX1+ transcriptome and indicate that the addition of Quisinostat may be beneficial to target non‐responsive or relapsing ETV6::RUNX1+ BCP‐ALL.
Journal Article
Multimodal and spatially resolved profiling identifies distinct patterns of T cell infiltration in nodal B cell lymphoma entities
2024
The redirection of T cells has emerged as an attractive therapeutic principle in B cell non-Hodgkin lymphoma (B-NHL). However, a detailed characterization of lymphoma-infiltrating T cells across B-NHL entities is missing. Here we present an in-depth T cell reference map of nodal B-NHL, based on cellular indexing of transcriptomes and epitopes, T cell receptor sequencing, flow cytometry and multiplexed immunofluorescence applied to 101 lymph nodes from patients with diffuse large B cell, mantle cell, follicular or marginal zone lymphoma, and from healthy controls. This multimodal resource revealed quantitative and spatial aberrations of the T cell microenvironment across and within B-NHL entities. Quantitative differences in PD1
+
TCF7
−
cytotoxic T cells, T follicular helper cells or IKZF3
+
regulatory T cells were linked to their clonal expansion. The abundance of PD1
+
TCF7
−
cytotoxic T cells was associated with poor survival. Our study portrays lymphoma-infiltrating T cells with unprecedented comprehensiveness and provides a unique resource for the investigation of lymphoma biology and prognosis.
Roider, Baertsch et al. present a spatially resolved resource map of the T cell infiltration landscape across and within patients with distinct B cell non-Hodgkin lymphoma entities.
Journal Article