Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
255 result(s) for "Lazzaro, D."
Sort by:
Plant Organ Shapes Are Regulated by Protein Interactions and Associations With Microtubules
Plant organ shape is determined by the spatial-temporal expression of genes that control the direction and rate of cell division and expansion, as well as the mechanical constraints provided by the rigid cell walls and surrounding cells. Despite the importance of organ morphology during the plant life cycle, the interplay of patterning genes with these mechanical constraints and the cytoskeleton is poorly understood. Shapes of harvestable plant organs such as fruits, leaves, seeds and tubers vary dramatically among, and within crop plants. Years of selection have led to the accumulation of mutations in genes regulating organ shapes, allowing us to identify new genetic and molecular components controlling morphology as well as the interactions among the proteins. Using tomato as a model, we discuss the interaction of Ovate Family Proteins (OFPs) with a subset of TONNEAU1-recruiting motif family of proteins (TRMs) as a part of the protein network that appears to be required for interactions with the microtubules leading to coordinated multicellular growth in plants. In addition, and other members of the IQD family also exert their effects on organ shape by interacting with microtubules. In this review, we aim to illuminate the probable mechanistic aspects of organ growth mediated by OFP-TRM and SUN/IQD via their interactions with the cytoskeleton.
Spatially-Adaptive Variational Reconstructions for Linear Inverse Electrical Impedance Tomography
The inverse electrical impedance tomography (EIT) problem involves collecting electrical measurements on the smooth boundary of a region to determine the spatially varying electrical conductivity distribution within the bounded region. Effective applications of EIT technology emerged in different areas of engineering, technology, and applied sciences. However, the mathematical formulation of EIT is well known to suffer from a high degree of nonlinearity and severe ill-posedness. Therefore, regularization is required to produce reasonable electrical impedance images. Using difference imaging, we propose a spatially-variant variational method which couples sparsity regularization and smoothness regularization for improved EIT linear reconstructions. The EIT variational model can benefit from structural prior information in the form of an edge detection map coming either from an auxiliary image of the same object being reconstructed or automatically detected. We propose an efficient algorithm for minimizing the (non-convex) function based on the alternating direction method of multipliers. Experiments are presented which strongly indicate that using non-convex versus convex variational EIT models holds the potential for more accurate reconstructions.
Polarized cell growth, organelle motility, and cytoskeletal organization in conifer pollen tube tips are regulated by KCBP, the calmodulin-binding kinesin
Kinesin-like calmodulin-binding protein (KCBP), a member of the Kinesin 14 family, is a minus end directed C-terminal motor unique to plants and green algae. Its motor activity is negatively regulated by calcium/calmodulin binding, and its tail region contains a secondary microtubule-binding site. It has been identified but not functionally characterized in the conifer Picea abies. Conifer pollen tubes exhibit polarized growth as organlles move into the tip in an unusual fountain pattern directed by microfilaments but uniquely organized by microtubules. We demonstrate here that PaKCBP and calmodulin regulate elongation and motility. PaKCBP is a 140 kDa protein immunolocalized to the elongating tip, coincident with microtubules. This localization is lost when microtubules are disrupted with oryzalin, which also reorganizes microfilaments into bundles. Colocalization of PaKCBP along microtubules is enhanced when microfilaments are disrupted with latrunculin B, which also disrupts the fine network of microtubules throughout the tip while preserving thicker microtubule bundles. Calmodulin inhibition by W-12 perfusion reversibly slows pollen tube elongation, alters organelle motility, promotes microfilament bundling, and microtubule bundling coincident with increased PaKCBP localization. The constitutive activation of PaKCBP by microinjection of an antibody that displaces calcium/calmodulin and activates microtubule bundling repositions vacuoles in the tip before rapidly stopping organelle streaming and pollen tube elongation. We propose that PaKCBP is one of the target proteins in conifer pollen modulated by calmodulin inhibition leading to microtubule bundling, which alters microtubule and microfilament organization, repositions vacuoles and slows organelle motility and pollen tube elongation.
Efficient Compressed Sensing Based MRI Reconstruction using Nonconvex Total Variation Penalties
This work addresses the problem of Magnetic Resonance Image Reconstruction from highly sub-sampled measurements in the Fourier domain. It is modeled as a constrained minimization problem, where the objective function is a non-convex function of the gradient of the unknown image and the constraints are given by the data fidelity term. We propose an algorithm, Fast Non Convex Reweighted (FNCR), where the constrained problem is solved by a reweighting scheme, as a strategy to overcome the non-convexity of the objective function, with an adaptive adjustment of the penalization parameter. We propose a fast iterative algorithm and we can prove that it converges to a local minimum because the constrained problem satisfies the Kurdyka-Lojasiewicz property. Moreover the adaptation of non convex l0 approximation and penalization parameters, by means of a continuation technique, allows us to obtain good quality solutions, avoiding to get stuck in unwanted local minima. Some numerical experiments performed on MRI sub-sampled data show the efficiency of the algorithm and the accuracy of the solution.
A fast subgradient algorithm in image super-resolution
In this paper we propose an ε-subgradient method for solving a constrained minimization problem arising in super-resolution imaging applications. The method, compared to the state-of-the-art methods for single image super-resolution on some test problems, proves to be very efficient, both for the reconstruction quality and the computational time.
Calcium gradients in conifer pollen tubes; dynamic properties differ from those seen in angiosperms
Pollen tubes are an established model system for examining polarized cell growth. The focus here is on pollen tubes of the conifer Norway spruce (Picea abies, Pinaceae); examining the relationship between cytosolic free Ca²⁺, tip elongation, and intracellular motility. Conifer pollen tubes show important differences from their angiosperm counterparts; they grow more slowly and their organelles move in an unusual fountain pattern, as opposed to reverse fountain, in the tip. Ratiometric ion imaging of growing pollen tubes, microinjected with fura-2-dextran, reveals a tip-focused [Ca²⁺][subscript i] gradient extending from 450 nM at the extreme apex to 225 nM at the base of the tip clear zone. Injection of 5,5' dibromo-BAPTA does not dissipate the apical gradient, but stops cell elongation and uniquely causes rapid, transient increases of apical free Ca²⁺. The [Ca²⁺][subscript i] gradient is, however, dissipated by reversible perfusion of extracellular caffeine. When the basal cytosolic free Ca²⁺ concentration falls below 150 nM, again a large increase in apical [Ca²⁺][subscript i] occurs. An external source of calcium is not required for germination but significantly enhances elongation. However, both germination and elongation are significantly inhibited by the inclusion of calcium channels blockers, including lanthanum, gadolinium, or verapamil. Modulation of intracellular calcium also affects organelle position and motility. Extracellular perfusion of lanthanides reversibly depletes the apical [Ca²⁺][subscript i] gradient, altering organelle positioning in the tip. Later, during recovery from lanthanide perfusion, organelle motility switches direction to a reverse fountain. When taken together these data show a unique interplay in Picea abies pollen tubes between intracellular calcium and the motile processes controlling cellular organization.
Charon's size and an upper limit on its atmosphere from a stellar occultation
Charon among the stars Stellar occultations, when a Solar System object passes between us and a star and blocks its light, are eagerly awaited by astronomers as they provide a chance to make measurements that are not normally possible. It had been 25 years since a solitary observation of a stellar occultation by Pluto's moon Charon. But on 11 July 2005 another occurred and this time observatories across South America were ideally placed to track it. The resulting haul of data has been used to obtain an accurate measure of Charon's radius, of close to 605 km, and to establish an upper limit (a rather low one) on the density of its atmosphere. Visit tinyurl.com/9c56s for a QuickTime movie of the event. Pluto and its satellite, Charon (discovered in 1978; ref. 1 ), appear to form a double planet, rather than a hierarchical planet/satellite couple. Charon is about half Pluto's size and about one-eighth its mass. The precise radii of Pluto and Charon have remained uncertain, leading to large uncertainties on their densities 2 . Although stellar occultations by Charon are in principle a powerful way of measuring its size, they are rare, as the satellite subtends less than 0.3 microradians (0.06 arcsec) on the sky. One occultation (in 1980) yielded a lower limit of 600 km for the satellite's radius 3 , which was later refined to 601.5 km (ref. 4 ). Here we report observations from a multi-station stellar occultation by Charon, which we use to derive a radius, R C = 603.6 ± 1.4 km (1 σ ), and a density of ρ = 1.71 ± 0.08 g cm -3 . This occultation also provides upper limits of 110 and 15 (3 σ ) nanobar for an atmosphere around Charon, assuming respectively a pure nitrogen or pure methane atmosphere.
Microtubules and microfilaments coordinate to direct a fountain streaming pattern in elongating conifer pollen tube tips
This study investigates how microtubules and microfilaments control organelle motility within the tips of conifer pollen tubes. Organelles in the 30-micrometer-long clear zone at the tip of Picea abies (L.) Karst. (Pinaceae) pollen tubes move in a fountain pattern. Within the center of the tube, organelles move into the tip along clearly defined paths, move randomly at the apex, and then move away from the tip beneath the plasma membrane. This pattern coincides with microtubule and microfilament organization and is the opposite of the reverse fountain seen in angiosperm pollen tubes. Application of latrunculin B, which disrupts microfilaments, completely stops growth and reduces organelle motility to Brownian motion. The clear zone at the tip remains intact but fills with thin tubules of endoplasmic reticulum. Applications of amiprophosmethyl, propyzamide or oryzalin, which all disrupt microtubules, stop growth, alter organelle motility within the tip, and alter the organization of actin microfilaments. Amiprophosmethyl inhibits organelle streaming and collapses the clear zone of vesicles at the extreme tip together with the disruption of microfilaments leading into the tip, leaving the plasma membrane intact. Propyzamide and oryzalin cause the accumulation of membrane tubules or vacuoles in the tip that reverse direction and stream in a reverse fountain. The microtubule disruption caused by propyzamide and oryzalin also reorganizes microfilaments from a fibrillar network into pronounced bundles in the tip cytoplasm. We conclude that microtubules control the positioning of organelles into and within the tip and influence the direction of streaming by mediating microfilament organization.
Discovery of a Basaltic Asteroid in the Outer Main Belt
Visible and near-infrared spectroscopic observations of the asteroid 1459 Magnya indicate that it has a basaltic surface. Magnya is at 3.15 astronomical units (AU) from the sun and has no known dynamical link to any family, to any nearby large asteroid, or to asteroid 4 Vesta at 2.36 AU, which is the only other known large basaltic asteroid. We show that the region of the belt around Magnya is densely filled by mean-motion resonances, generating slow orbital diffusion processes and providing a potential mechanism for removing other basaltic fragments that may have been created on the same parent body as Magnya. Magnya may represent a rare surviving fragment from a larger, differentiated planetesimal that was disrupted long ago.
Microtubule organization in germinated pollen of the conifer Picea abies (Norway spruce, Pinaceae)
The organization of microtubules in germinated pollen of the conifer Picea abies (Norway spruce, Pinaceae) was examined using primarily confocal microscopy. Pollination in conifers differs from angiosperms in the number of mitotic divisions between the microspore and the sperm and in the growth rate of the pollen tube. These differences may be orchestrated by the cytoskeleton, and this study finds that there are important functional differences in microtubule organization within conifer pollen compared to the angiosperm model systems. Pollen from P. abies contains two degenerated prothallial cells, a body cell, a stalk cell, and a vegetative cell. The body cell produces the sperm. In the vegetative cell, microtubules form a continuous network from within the pollen grain, out through the aperture, and down the length of the tube to the elongating tip. Within the grain, this network extends from the pollen grain wall to the body and stalk cell complex. Microtubules within the body and stalk cells form a densely packed array that enmeshes amyloplasts and the nucleus. Microtubule bundles can be traced between the body and stalk cells from the cytoplasm of the body cell to the adjoining cell wall and into the cytoplasm of the stalk cell. Body and stalk cells are connected by plasmodesmata. The organization of microtubules and the presence of plasmodesmata suggest that microtubules form a path for intercellular communication by projecting from the cytoplasm to interconnecting plasmodesmata. Microtubules in the elongating tube form a net axial array that ensheathes the vegetative nucleus. Microtubules are enriched at the elongating tip, where they form an array beneath the plasma membrane that is perpendicular to the direction of tube growth. This enriched region extends back 20 μm from the tip. There is an abrupt transition from a net perpendicular to a net axial organization at the edge of the enriched region. In medial sections, microtubules are present in the core of the elongating tip. The organization of microtubules in the tip differs from that seen in angiosperm pollen tubes.