Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "Le Masson, Erwan"
Sort by:
Global Monitoring of the Vegetation Dynamics from the Vegetation Optical Depth (VOD): A Review
Vegetation is a key element in the energy, water and carbon balances over the land surfaces and is strongly impacted by climate change and anthropogenic effects. Remotely sensed observations are commonly used for the monitoring of vegetation dynamics and its temporal changes from regional to global scales. Among the different indices derived from Earth observation satellites to study the vegetation, the vegetation optical depth (VOD), which is related to the intensity of extinction effects within the vegetation canopy layer in the microwave domain and which can be derived from both passive and active microwave observations, is increasingly used for monitoring a wide range of ecological vegetation variables. Based on different frequency bands used to derive VOD, from L- to Ka-bands, these variables include, among others, the vegetation water content/status and the above ground biomass. In this review, the theoretical bases of VOD estimates for both the passive and active microwave domains are presented and the global long-term VOD products computed from various groups in the world are described. Then, major findings obtained using VOD are reviewed and the perspectives offered by methodological improvements and by new sensors onboard satellite missions recently launched or to be launched in a close future are presented.
How Attention Can Create Synaptic Tags for the Learning of Working Memories in Sequential Tasks
Intelligence is our ability to learn appropriate responses to new stimuli and situations. Neurons in association cortex are thought to be essential for this ability. During learning these neurons become tuned to relevant features and start to represent them with persistent activity during memory delays. This learning process is not well understood. Here we develop a biologically plausible learning scheme that explains how trial-and-error learning induces neuronal selectivity and working memory representations for task-relevant information. We propose that the response selection stage sends attentional feedback signals to earlier processing levels, forming synaptic tags at those connections responsible for the stimulus-response mapping. Globally released neuromodulators then interact with tagged synapses to determine their plasticity. The resulting learning rule endows neural networks with the capacity to create new working memory representations of task relevant information as persistent activity. It is remarkably generic: it explains how association neurons learn to store task-relevant information for linear as well as non-linear stimulus-response mappings, how they become tuned to category boundaries or analog variables, depending on the task demands, and how they learn to integrate probabilistic evidence for perceptual decisions.
Prevalence of Mental Disorders and Addictions among Homeless People in the Greater Paris Area, France
The Samenta study was conducted in 2009 in the Greater Paris area to estimate the prevalence of psychiatric disorders in homeless people. A cross-sectional survey was performed with a three-stage random sample of homeless people (n = 859), including users of day services, emergency shelters, hot meal distribution, long-term rehabilitation centres, and social hotels. Information was collected by a lay interviewer, using the Mini International Neuropsychiatric Interview, and completed by a psychologist through an open clinical interview. In the end, a psychiatrist assessed the psychiatric diagnosis according to the International Statistical Classification of Diseases and Related Health Problems (ICD, 10th revision). One third of homeless people in the Paris area had at least one severe psychiatric disorder (SPD): psychotic disorders (13%), anxiety disorders (12%), or severe mood disorders (7%). One in five was alcohol-dependent and 18% were drug users. Homeless women had significantly higher prevalence of anxiety disorders and depression compared to men, who were more likely to suffer from psychotic disorders. Homeless people of French origin were at higher risk of SPD, as well as people who experienced various adverse life events before the age of 18 (running away, sexual violence, parental disputes, and/or addictions) and those who experienced homelessness for the first time before the age of 26. The prevalence rates of the main psychiatric disorders within the homeless population of our study are consistent with those reported in other Western cities. Our results advocate for an improvement in the detection, housing, and care of psychiatric homeless people.
Estimation of missing building height in OpenStreetMap data: a French case study using GeoClimate 0.0.1
Information describing the elements of urban landscapes is required as input data to study numerous physical processes (e.g., climate, noise, air pollution). However, the accessibility and quality of urban data is heterogeneous across the world. As an example, a major open-source geographical data project (OpenStreetMap) demonstrates incomplete data regarding key urban properties such as building height. The present study implements and evaluates a statistical approach that models the missing values of building height in OpenStreetMap. A random forest method is applied to estimate building height based on a building’s closest environment. A total of 62 geographical indicators are calculated with the GeoClimate tool and used as independent variables. A training dataset of 14 French communes is selected, and the reference building height is provided by the BDTopo IGN. An optimized random forest algorithm is proposed, and outputs are compared with an evaluation dataset. At building scale for all cities, at least 50 % of the buildings have their height estimated with an error of less than 4 m (the cities' median building heights range from 4.5 to 18 m). Two communes (Paris and Meudon) demonstrate building height results that deviate from the main trend due to their specific urban fabrics. Putting aside these two communes, when building height is averaged at a regular grid scale (100m×100m), the median absolute error is 1.6 m, and at least 75 % of the cells of any city have an error lower than 3.2 m. This level of magnitude is quite reasonable when compared to the accuracy of the reference data (at least 50 % of the buildings have a height uncertainty equal to 5 m). This work offers insights about the estimation of missing urban data using statistical methods and contributes to the use of open-source datasets based on open-source software. The software used to produce the data is freely available at 10.5281/zenodo.6372337 , and the dataset can be freely accessed at 10.5281/zenodo.6855063 .