Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "Le Reun, Suzanne"
Sort by:
An extracellular complex between CLE-1/collagen XV/XVIII and Punctin/MADD-4 defines cholinergic synapse identity
The precise localization of postsynaptic receptors opposite neurotransmitter release sites is essential for synaptic function. This alignment relies on adhesion molecules, intracellular scaffolds, and a growing class of extracellular scaffolding proteins. However, how these secreted proteins are retained at synapses remains unclear. We addressed this question using C. elegans neuromuscular junctions, where Punctin, a conserved extracellular synaptic organizer, positions postsynaptic receptors. We identified CLE-1, the ortholog of collagens XV/XVIII, as a key stabilizer of Punctin. Punctin and CLE-1B, the main isoform present at neuromuscular junctions, form a complex and rely on each other for synaptic localization. Punctin undergoes cleavage, and in the absence of CLE-1, specific fragments are lost, resulting in the mislocalization of cholinergic receptors to GABAergic synapses. Additionally, CLE-1 regulates receptor levels independently of Punctin. These findings highlight a crucial extracellular complex that maintains synapse identity.