Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
540
result(s) for
"LeBrun, P."
Sort by:
First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment
by
Yahlali, N.
,
Lebrun, P.
,
Pérez, J.
in
Beta Decay
,
Classical and Quantum Gravitation
,
dark matter
2016
A
bstract
The NEXT experiment aims to observe the neutrinoless double beta decay of
136
Xe in a high-pressure xenon gas TPC using electroluminescence (EL) to amplify the signal from ionization. One of the main advantages of this technology is the possibility to reconstruct the topology of events with energies close to
Q
ββ
. This paper presents the first demonstration that the topology provides extra handles to reject background events using data obtained with the NEXT-DEMO prototype.
Single electrons resulting from the interactions of
22
Na 1275 keV gammas and electronpositron pairs produced by conversions of gammas from the
228
Th decay chain were used to represent the background and the signal in a double beta decay. These data were used to develop algorithms for the reconstruction of tracks and the identification of the energy deposited at the end-points, providing an extra background rejection factor of 24
.
3 ± 1
.
4 (stat.)%, while maintaining an efficiency of 66
.
7 ± 1
.
% for signal events.
Journal Article
Demonstration of the event identification capabilities of the NEXT-White detector
by
Yahlali, N.
,
Lebrun, P.
,
Haefner, J.
in
Beta decay
,
Classical and Quantum Gravitation
,
Computer simulation
2019
A
bstract
In experiments searching for neutrinoless double-beta decay, the possibility of identifying the two emitted electrons is a powerful tool in rejecting background events and therefore improving the overall sensitivity of the experiment. In this paper we present the first measurement of the efficiency of a cut based on the different event signatures of double and single electron tracks, using the data of the NEXT-White detector, the first detector of the NEXT experiment operating underground. Using a
228
Th calibration source to produce signal-like and background-like events with energies near 1.6 MeV, a signal efficiency of 71
.
6
±
1
.
5
stat
±
0
.
3
sys
% for a background acceptance of 20
.
6
±
0
.
4
stat
±
0
.
3
sys
% is found, in good agreement with Monte Carlo simulations. An extrapolation to the energy region of the neutrinoless double beta decay by means of Monte Carlo simulations is also carried out, and the results obtained show an improvement in background rejection over those obtained at lower energies.
Journal Article
Measurement of radon-induced backgrounds in the NEXT double beta decay experiment
by
Yahlali, N.
,
Lebrun, P.
,
Pérez, J.
in
Beta decay
,
Classical and Quantum Gravitation
,
Dark Matter and Double Beta Decay (experiments)
2018
A
bstract
The measurement of the internal
222
Rn activity in the NEXT-White detector during the so-called Run-II period with
136
Xe-depleted xenon is discussed in detail, together with its implications for double beta decay searches in NEXT. The activity is measured through the alpha production rate induced in the fiducial volume by
222
Rn and its alpha-emitting progeny. The specific activity is measured to be (38.1 ± 2.2 (stat.) ± 5.9 (syst.)) mBq/m
3
. Radon-induced electrons have also been characterized from the decay of the
214
Bi daughter ions plating out on the cathode of the time projection chamber. From our studies, we conclude that radon-induced backgrounds are sufficiently low to enable a successful NEXT-100 physics program, as the projected rate contribution should not exceed 0.1 counts/yr in the neutrinoless double beta decay sample.
Journal Article
Demonstration of event position reconstruction based on diffusion in the NEXT-white detector
by
Lebrun, P.
,
Teixeira, J. M. R.
,
Soto-Oton, J.
in
Artificial neural networks
,
Astronomy
,
Astrophysics and Cosmology
2024
Noble element time projection chambers are a leading technology for rare event detection in physics, such as for dark matter and neutrinoless double beta decay searches. Time projection chambers typically assign event position in the drift direction using the relative timing of prompt scintillation and delayed charge collection signals, allowing for reconstruction of an absolute position in the drift direction. In this paper, alternate methods for assigning event drift distance via quantification of electron diffusion in a pure high pressure xenon gas time projection chamber are explored. Data from the NEXT-White detector demonstrate the ability to achieve good position assignment accuracy for both high- and low-energy events. Using point-like energy deposits from
83
m
Kr calibration electron captures (
E
∼
45
keV), the position of origin of low-energy events is determined to 2 cm precision with bias
<
1
mm. A convolutional neural network approach is then used to quantify diffusion for longer tracks (
E
≥
1.5
MeV), from radiogenic electrons, yielding a precision of 3 cm on the event barycenter. The precision achieved with these methods indicates the feasibility energy calibrations of better than 1% FWHM at Q
β
β
in pure xenon, as well as the potential for event fiducialization in large future detectors using an alternate method that does not rely on primary scintillation.
Journal Article
Electroluminescence TPCs at the thermal diffusion limit
2019
A
bstract
The NEXT experiment aims at searching for the hypothetical neutrinoless double-beta decay from the
136
Xe isotope using a high-purity xenon TPC. Efficient discrimination of the events through pattern recognition of the topology of primary ionisation tracks is a major requirement for the experiment. However, it is limited by the diffusion of electrons. It is known that the addition of a small fraction of a molecular gas to xenon reduces electron diffusion. On the other hand, the electroluminescence (EL) yield drops and the achievable energy resolution may be compromised. We have studied the effect of adding several molecular gases to xenon (CO
2
, CH
4
and CF
4
) on the EL yield and energy resolution obtained in a small prototype of driftless gas proportional scintillation counter. We have compared our results on the scintillation characteristics (EL yield and energy resolution) with a microscopic simulation, obtaining the diffusion coefficients in those conditions as well. Accordingly, electron diffusion may be reduced from about 10 mm/
m
for pure xenon down to 2.5 mm/
m
using additive concentrations of about 0.05%, 0.2% and 0.02% for CO
2
, CH
4
and CF
4
, respectively. Our results show that CF
4
admixtures present the highest EL yield in those conditions, but very poor energy resolution as a result of huge fluctuations observed in the EL formation. CH
4
presents the best energy resolution despite the EL yield being the lowest. The results obtained with xenon admixtures are extrapolated to the operational conditions of the NEXT-100 TPC. CO
2
and CH
4
show potential as molecular additives in a large xenon TPC. While CO
2
has some operational constraints, making it difficult to be used in a large TPC, CH
4
shows the best performance and stability as molecular additive to be used in the NEXT-100 TPC, with an extrapolated energy resolution of 0.4% at 2.45 MeV for concentrations below 0.4%, which is only slightly worse than the one obtained for pure xenon. We demonstrate the possibility to have an electroluminescence TPC operating very close to the thermal diffusion limit without jeopardizing the TPC performance, if CO
2
or CH
4
are chosen as additives.
Journal Article
Low-diffusion Xe-He gas mixtures for rare-event detection: electroluminescence yield
by
Yahlali, N.
,
Lebrun, P.
,
Haefner, J.
in
Admixtures
,
Beta decay
,
Classical and Quantum Gravitation
2020
A
bstract
High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionisation trails is a major asset for this type of TPC when compared to single liquid or double-phase TPCs, limited mainly by the high electron diffusion in pure xenon. Helium admixtures with xenon can be an attractive solution to reduce the electron diffu- sion significantly, improving the discrimination efficiency of these optical TPCs. We have measured the electroluminescence (EL) yield of Xe–He mixtures, in the range of 0 to 30% He and demonstrated the small impact on the EL yield of the addition of helium to pure xenon. For a typical reduced electric field of 2.5 kV/cm/bar in the EL region, the EL yield is lowered by ∼ 2%, 3%, 6% and 10% for 10%, 15%, 20% and 30% of helium concentration, respectively. This decrease is less than what has been obtained from the most recent simulation framework in the literature. The impact of the addition of helium on EL statistical fluctuations is negligible, within the experimental uncertainties. The present results are an important benchmark for the simulation tools to be applied to future optical TPCs based on Xe-He mixtures.
Journal Article
Retrovirus-Mediated Expression of E2A-PBX1 Blocks Lymphoid Fate but Permits Retention of Myeloid Potential in Early Hematopoietic Progenitors
by
Slany, Robert K.
,
Woodcroft, Mark W.
,
LeBrun, David P.
in
Acute lymphoblastic leukemia
,
Animals
,
Antibiotics
2015
The oncogenic transcription factor E2A-PBX1 is expressed consequent to chromosomal translocation 1;19 and is an important oncogenic driver in cases of pre-B-cell acute lymphoblastic leukemia (ALL). Elucidating the mechanism by which E2A-PBX1 induces lymphoid leukemia would be expedited by the availability of a tractable experimental model in which enforced expression of E2A-PBX1 in hematopoietic progenitors induces pre-B-cell ALL. However, hematopoietic reconstitution of irradiated mice with bone marrow infected with E2A-PBX1-expressing retroviruses consistently gives rise to myeloid, not lymphoid, leukemia. Here, we elucidate the hematopoietic consequences of forced E2A-PBX1 expression in primary murine hematopoietic progenitors. We show that introducing E2A-PBX1 into multipotent progenitors permits the retention of myeloid potential but imposes a dense barrier to lymphoid development prior to the common lymphoid progenitor stage, thus helping to explain the eventual development of myeloid, and not lymphoid, leukemia in transplanted mice. Our findings also indicate that E2A-PBX1 enforces the aberrant, persistent expression of some genes that would normally have been down-regulated in the subsequent course of hematopoietic maturation. We show that enforced expression of one such gene, Hoxa9, a proto-oncogene associated with myeloid leukemia, partially reproduces the phenotype produced by E2A-PBX1 itself. Existing evidence suggests that the 1;19 translocation event takes place in committed B-lymphoid progenitors. However, we find that retrovirus-enforced expression of E2A-PBX1 in committed pro-B-cells results in cell cycle arrest and apoptosis. Our findings indicate that the neoplastic phenotype induced by E2A-PBX1 is determined by the developmental stage of the cell into which the oncoprotein is introduced.
Journal Article
AEgIS at ELENA: outlook for physics with a pulsed cold antihydrogen beam
2018
The efficient production of cold antihydrogen atoms in particle traps at CERN's Antiproton Decelerator has opened up the possibility of performing direct measurements of the Earth's gravitational acceleration on purely antimatter bodies. The goal of the AEgIS collaboration is to measure the value of g for antimatter using a pulsed source of cold antihydrogen and a Moiré deflectometer/Talbot-Lau interferometer. The same antihydrogen beam is also very well suited to measuring precisely the ground-state hyperfine splitting of the anti-atom. The antihydrogen formation mechanism chosen by AEgIS is resonant charge exchange between cold antiprotons and Rydberg positronium. A series of technical developments regarding positrons and positronium (Ps formation in a dedicated room-temperature target, spectroscopy of the n=1-3 and n=3-15 transitions in Ps, Ps formation in a target at 10 K inside the 1 T magnetic field of the experiment) as well as antiprotons (high-efficiency trapping of , radial compression to sub-millimetre radii of mixed plasmas in 1 T field, high-efficiency transfer of to the antihydrogen production trap using an in-flight launch and recapture procedure) were successfully implemented. Two further critical steps that are germane mainly to charge exchange formation of antihydrogen-cooling of antiprotons and formation of a beam of antihydrogen-are being addressed in parallel. The coming of ELENA will allow, in the very near future, the number of trappable antiprotons to be increased by more than a factor of 50. For the antihydrogen production scheme chosen by AEgIS, this will be reflected in a corresponding increase of produced antihydrogen atoms, leading to a significant reduction of measurement times and providing a path towards high-precision measurements.
This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'.
Journal Article
High-grade B-cell lymphoma with MYC and BCL2 rearrangements arising in a composite lymphoma
2018
Background
We report the first case of composite lymphoma consisting of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), follicular lymphoma (FL) and high-grade B-cell lymphoma with
MYC
and
BCL2
rearrangements within the same needle biopsy in which a clonal relationship between the FL and high-grade B-cell lymphoma components was demonstrated by molecular cytogenetics.
Case presentation
An 85-year-old man presented with masses in his neck and right groin. Cutting needle biopsy of the inguinal mass revealed the three lymphoma types which were morphologically, immunophenotypically and topographically distinct. Fluorescence in situ hybridization (FISH) identified an
IGH-BCL2
rearrangement in both the FL and high-grade B-cell components while a
MYC
rearrangement was detected in the high-grade B-cell component alone.
Conclusions
Our findings suggest that the high-grade lymphoma with
MYC
and
BCL2
translocations evolved through transformation of the FL by a process that entailed acquisition of the
MYC
translocation. No clonal relationship between the FL and CLL/SLL components was evident since the
IGH-BCL2
rearrangement was present in in the former but not the latter. This unique case of co-localized FL, CLL/SLL, and high-grade B-cell lymphoma contributes to our understanding of the clonal relationships that may exist between the components of composite lymphomas.
Journal Article