Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5
result(s) for
"Leah J. LeVay"
Sort by:
Antarctic icebergs reorganize ocean circulation during Pleistocene glacials
by
Lathika, Nambiyathodi
,
Robinson, Rebecca S.
,
Bigg, Grant R.
in
704/106/2738
,
704/106/413
,
Analysis
2021
The dominant feature of large-scale mass transfer in the modern ocean is the Atlantic meridional overturning circulation (AMOC). The geometry and vigour of this circulation influences global climate on various timescales. Palaeoceanographic evidence suggests that during glacial periods of the past 1.5 million years the AMOC had markedly different features from today
1
; in the Atlantic basin, deep waters of Southern Ocean origin increased in volume while above them the core of the North Atlantic Deep Water (NADW) shoaled
2
. An absence of evidence on the origin of this phenomenon means that the sequence of events leading to global glacial conditions remains unclear. Here we present multi-proxy evidence showing that northward shifts in Antarctic iceberg melt in the Indian–Atlantic Southern Ocean (0–50° E) systematically preceded deep-water mass reorganizations by one to two thousand years during Pleistocene-era glaciations. With the aid of iceberg-trajectory model experiments, we demonstrate that such a shift in iceberg trajectories during glacial periods can result in a considerable redistribution of freshwater in the Southern Ocean. We suggest that this, in concert with increased sea-ice cover, enabled positive buoyancy anomalies to ‘escape’ into the upper limb of the AMOC, providing a teleconnection between surface Southern Ocean conditions and the formation of NADW. The magnitude and pacing of this mechanism evolved substantially across the mid-Pleistocene transition, and the coeval increase in magnitude of the ‘southern escape’ and deep circulation perturbations implicate this mechanism as a key feedback in the transition to the ‘100-kyr world’, in which glacial–interglacial cycles occur at roughly 100,000-year periods.
Iceberg-trajectory models along with multi-proxy evidence from sediment cores from the Indian Ocean show that northward shifts in Antarctic iceberg melt redistributed freshwater in the Southern Ocean during the Pleistocene.
Journal Article
The Extending Ocean Drilling Pursuits (eODP) Project: Synthesizing Scientific Ocean Drilling Data
2023
For over 50 years, cores recovered from ocean basins have generated fossil, lithologic, and chemical archives that have revolutionized fields within the earth sciences. Although scientific ocean drilling (SOD) data are openly available following each expedition, the formats for these data are heterogeneous. Furthermore, lithological, chronological, and paleobiological data are typically separated into different repositories, limiting researchers' abilities to discover and analyze integrated SOD data sets. Emphasis within Earth Sciences on Findable, Accessible, Interoperable, and Reusable (FAIR) Data Principles and the establishment of community‐led databases provide a pathway to unite SOD data and further harness the scientific potential of the investments made in offshore drilling. Here, we describe a workflow for compiling, cleaning, and standardizing key SOD records, and importing them into the Paleobiology Database and Macrostrat, systems with versatile, open data distribution mechanisms. These efforts are being carried out by the extending Ocean Drilling Pursuits (eODP) project. eODP has processed all of the lithological, chronological, and paleobiological data from one SOD repository, along with numerous other data sets that were never deposited in a database; these were manually transcribed from original reports. This compiled data set contains over 79,899 lithological units from 1,125 drilling holes from 422 sites. Over 26,000 fossil‐bearing samples, with 5,378 taxonomic entries from 13 biological groups, are placed within this lithologic spatiotemporal framework. All information is available via GitHub and Macrostrat's application programming interface, which renders data retrievable by a variety of parameters, including age, site, and lithology. Key Points Scientific ocean drilling has produced vast amounts of data; however, they are not archived in a way that meets the Findable, Accessible, Interoperable, and Reusable data principles The extending Ocean Drilling Pursuits project standardizes lithology, paleontology, and age data across decades of drilling programs This project has migrated data sets to existing, open‐access, searchable databases to enable scientific research
Journal Article
Mid-Pleistocene climate transition drives net mass loss from rapidly uplifting St. Elias Mountains, Alaska
2015
Erosion, sediment production, and routing on a tectonically active continental margin reflect both tectonic and climatic processes; partitioning the relative importance of these processes remains controversial. Gulf of Alaska contains a preserved sedimentary record of the Yakutat Terrane collision with North America. Because tectonic convergence in the coastal St. Elias orogen has been roughly constant for 6 My, variations in its eroded sediments preserved in the offshore Surveyor Fan constrain a budget of tectonic material influx, erosion, and sediment output. Seismically imaged sediment volumes calibrated with chronologies derived from Integrated Ocean Drilling Program boreholes show that erosion accelerated in response to Northern Hemisphere glacial intensification (∼2.7 Ma) and that the 900-km-long Surveyor Channel inception appears to correlate with this event. However, tectonic influx exceeded integrated sediment efflux over the interval 2.8–1.2 Ma. Volumetric erosion accelerated following the onset of quasi-periodic (∼100-ky) glacial cycles in the mid-Pleistocene climate transition (1.2–0.7 Ma). Since then, erosion and transport of material out of the orogen has outpaced tectonic influx by 50–80%. Such a rapid net mass loss explains apparent increases in exhumation rates inferred onshore from exposure dates and mapped out-of-sequence fault patterns. The 1.2-My mass budget imbalance must relax back toward equilibrium in balance with tectonic influx over the timescale of orogenic wedge response (millions of years). The St. Elias Range provides a key example of how active orogenic systems respond to transient mass fluxes, and of the possible influence of climate-driven erosive processes that diverge from equilibrium on the million-year scale.
Journal Article
Strong glacial-interglacial variability in upper ocean hydrodynamics, biogeochemistry, and productivity in the southern Indian Ocean
by
Sidney R. Hemming
,
Janna Just
,
Thibaut Caley
in
Agulhas Plateau
,
Article ; Palaeoceanography ; Biogeochemistry
,
biogeochemistry
2021
In the southern Indian Ocean, the position of the subtropical front – the boundary between colder, fresher waters to the south and warmer, saltier waters to the north – has a strong influence on the upper ocean hydrodynamics and biogeochemistry. Here we analyse a sedimentary record from the Agulhas Plateau, located close to the modern position of the subtropical front and use alkenones and coccolith assemblages to reconstruct oceanographic conditions over the past 300,000 years. We identify a strong glacial-interglacial variability in sea surface temperature and productivity associated with subtropical front migration over the Agulhas Plateau, as well as shorter-term high frequency variability aligned with variations in high latitude insolation. Alkenone and coccolith abundances, in combination with diatom and organic carbon records indicate high glacial export productivity. We conclude that the biological pump was more efficient and strengthened during glacial periods, which could partly account for the reported reduction in atmospheric carbon dioxide concentrations.
Journal Article
Onset of strong Iceland-Scotland overflow water 3.6 million years ago
by
Parnell-Turner, Ross E.
,
OConnell, Suzanne
,
Suzuki, Takuma
in
142/126
,
704/106/2738
,
704/106/413
2025
North Atlantic Deep Water (NADW), the return flow component of the Atlantic Meridional Overturning Circulation (AMOC), is a major inter-hemispheric ocean water mass with strong climate effects but the evolution of its source components on million-year timescales is poorly known. Today, two major NADW components that flow southward over volcanic ridges to the east and west of Iceland are associated with distinct contourite drift systems that are forming off the coast of Greenland and on the eastern flank of the Reykjanes (mid-Atlantic) Ridge. Here we provide direct records of the early history of this drift sedimentation based on cores collected during International Ocean Discovery Programme (IODP) Expeditions 395C and 395. We find rapid acceleration of drift deposition linked to the eastern component of NADW, known as Iceland–Scotland Overflow Water at 3.6 million years ago (Ma). In contrast, the Denmark Strait Overflow Water feeding the western Eirik Drift has been persistent since the Late Miocene. These observations constrain the long-term evolution of the two NADW components, revealing their contrasting independent histories and allowing their links with climatic events such as Northern Hemisphere cooling at 3.6 Ma, to be assessed.
This study examines the history of North Atlantic deep-water masses, as recorded in marine sediments. Major lithological changes and increased rate of deposition reveal that stronger deep-ocean circulation initiated 3.6 million years ago.
Journal Article