Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
59
result(s) for
"Lecomte, Julie"
Sort by:
AAV9-mediated functional screening for cardioprotective cytokines in Coxsackievirus-B3-induced myocarditis
by
Heymans, Stephane
,
Ruozi, Giulia
,
Zentilin, Lorena
in
631/1647/2300
,
631/1647/2300/1514
,
631/250
2022
Viral myocarditis (VM) is an important cause of heart failure (HF) in children and adults. However, the molecular determinants involved in cardiac inflammation and cardiomyocyte necrosis remain poorly characterized, and cardioprotective molecules are currently missing. Here, we applied an in vivo method based on the functional selection (FunSel) of cardioprotective factors using AAV vectors for the unbiased identification of novel immunomodulatory molecules in a Coxsackievirus B3 (CVB3)-induced myocarditis mouse model. Two consecutive rounds of in vivo FunSel using an expression library of 60 cytokines were sufficient to identify five cardioprotective factors (IL9, IL3, IL4, IL13, IL15). The screening also revealed three cytokines (IL18, IL17b, and CCL11) that were counter-selected and likely to exert a detrimental effect. The pooled overexpression of the five most enriched cytokines using AAV9 vectors decreased inflammation and reduced cardiac dilatation, persisting at 1 month after treatment. Individual overexpression of IL9, the top ranking in our functional selection, markedly reduced cardiac inflammation and injury, concomitant with an increase of anti-inflammatory Th2-cells and a reduction of pro-inflammatory Th17- and Th22-cells at 14 days post-infection. AAV9-mediated FunSel cardiac screening identified IL9 and other four cytokines (IL3, IL4, IL13, and IL15) as cardioprotective factors in CVB3-induced VM in mice.
Journal Article
Bone Marrow-Derived Mesenchymal Stem Cells Drive Lymphangiogenesis
by
Carnet, Oriane
,
Cataldo, Didier
,
Noel, Agnès
in
Angiogenesis
,
Animals
,
Biochemistry, biophysics & molecular biology
2014
It is now well accepted that multipotent Bone-Marrow Mesenchymal Stem Cells (BM-MSC) contribute to cancer progression through several mechanisms including angiogenesis. However, their involvement during the lymphangiogenic process is poorly described. Using BM-MSC isolated from mice of two different backgrounds, we demonstrate a paracrine lymphangiogenic action of BM-MSC both in vivo and in vitro. Co-injection of BM-MSC and tumor cells in mice increased the in vivo tumor growth and intratumoral lymphatic vessel density. In addition, BM-MSC or their conditioned medium stimulated the recruitment of lymphatic vessels in vivo in an ear sponge assay, and ex vivo in the lymphatic ring assay (LRA). In vitro, MSC conditioned medium also increased the proliferation rate and the migration of both primary lymphatic endothelial cells (LEC) and an immortalized lymphatic endothelial cell line. Mechanistically, these pro-lymphangiogenic effects relied on the secretion of Vascular Endothelial Growth Factor (VEGF)-A by BM-MSC that activates VEGF Receptor (VEGFR)-2 pathway on LEC. Indeed, the trapping of VEGF-A in MSC conditioned medium by soluble VEGF Receptors (sVEGFR)-1, -2 or the inhibition of VEGFR-2 activity by a specific inhibitor (ZM 323881) both decreased LEC proliferation, migration and the phosphorylation of their main downstream target ERK1/2. This study provides direct unprecedented evidence for a paracrine lymphangiogenic action of BM-MSC via the production of VEGF-A which acts on LEC VEGFR-2.
Journal Article
AntagomiR-103 and -107 Treatment Affects Cardiac Function and Metabolism
by
van Leeuwen, Rick
,
Mohren, Ronny
,
Heymans, Stephane
in
antagomiR
,
Biochemistry, biophysics & molecular biology
,
Biochimie, biophysique & biologie moléculaire
2019
MicroRNA-103/107 regulate systemic glucose metabolism and insulin sensitivity. For this reason, inhibitory strategies for these microRNAs are currently being tested in clinical trials. Given the high metabolic demands of the heart and the abundant cardiac expression of miR-103/107, we questioned whether antagomiR-mediated inhibition of miR-103/107 in C57BL/6J mice impacts on cardiac function. Notably, fractional shortening decreased after 6 weeks of antagomiR-103 and -107 treatment. This was paralleled by a prolonged systolic radial and circumferential time to peak and by a decreased global strain rate. Histology and electron microscopy showed reduced cardiomyocyte area and decreased mitochondrial volume and mitochondrial cristae density following antagomiR-103 and -107. In line, antagomiR-103 and -107 treatment decreased mitochondrial OXPHOS complexes’ protein levels compared to scrambled, as assessed by mass spectrometry-based label-free quantitative proteomics. MiR-103/107 inhibition in primary cardiomyocytes did not affect glycolysis rates, but it decreased mitochondrial reserve capacity, reduced mitochondrial membrane potential, and altered mitochondrial network morphology, as assessed by live-cell imaging. Our data indicate that antagomiR-103 and -107 decrease cardiac function, cardiomyocyte size, and mitochondrial oxidative capacity in the absence of pathological stimuli. These data raise concern about the possible cardiac implications of the systemic use of antagomiR-103 and -107 in the clinical setting, and careful cardiac phenotyping within ongoing trials is highly recommended.
Journal Article
Isolation and identification of soil bacteria growing at the expense of arbuscular mycorrhizal fungi
by
Hijri, Mohamed
,
Lecomte, Julie
,
St-Arnaud, Marc
in
16S rRNA gene
,
Agrostis - microbiology
,
Agrostis stolonifera
2011
Soil-microorganism symbioses are of fundamental importance for plant adaptation to the environment. Research in microbial ecology has revealed that some soil bacteria are associated with arbuscular mycorrhizal fungi (AMF). However, these interactions may be much more complex than originally thought. To assess the type of bacteria associated with AMF, we initially isolated spores of Glomus irregulare from an Agrostis stolonifera rhizosphere. The spores were washed with sterile water and plated onto G. irregulare mycelium growing in vitro in a root-free compartment of bicompartmented Petri dishes. We hypothesized that this system should select for bacteria closely associated with the fungus because the only nutrients available to the bacteria were those derived from the hyphae. Twenty-nine bacterial colonies growing on the AMF hyphae were subcultured and identified using 16S rRNA gene sequences. All bacterial isolates showed high sequence identity to Bacillus cereus, Bacillus megaterium, Bacillus simplex, Kocuria rhizophila, Microbacterium ginsengisoli, Sphingomonas sp. and Variovorax paradoxus. We also assessed bacterial diversity on the surface of spores by PCR-denaturating gradient gel electrophoresis. Finally, we used live cellular imaging to show that the bacteria isolated can grow on the surface of hyphae with different growing patterns in contrast to Escherichia coli as a control.
Journal Article
Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice
by
Noel, Agnès
,
Foidart, Jean Michel
,
Lambert, Vincent
in
631/1647/334/1874/345
,
631/1647/767/1657
,
631/378/1689/1626
2013
The mouse model of laser-induced choroidal neovascularization (CNV) has been used extensively in studies of the exudative form of age-related macular degeneration (AMD). This experimental
in vivo
model relies on laser injury to perforate Bruch's membrane, resulting in subretinal blood vessel recruitment from the choroid. By recapitulating the main features of the exudative form of human AMD, this assay has served as the backbone for testing antiangiogenic therapies. This standardized protocol can be applied to transgenic mice and can include treatments with drugs, recombinant proteins, antibodies, adenoviruses and pre-microRNAs to aid in the search for new molecular regulators and the identification of novel targets for innovative treatments. This robust assay requires 7–14 d to complete, depending on the treatment applied and whether immunostaining is performed. This protocol includes details of how to induce CNV, including laser induction, lesion excision, processing and different approaches to quantify neoformed vasculature.
Journal Article
Does Plasminogen Activator Inhibitor-1 Drive Lymphangiogenesis?
2010
The purpose of this study is to explore the function of plasminogen activator inhibitor-1 (PAI-1) during pathological lymphangiogenesis. PAI-1, the main physiological inhibitor of plasminogen activators is involved in pathological angiogenesis at least by controlling extracellular proteolysis and by regulating endothelial cell survival and migration. Protease system's role in lymphangiogenesis is unknown yet. Thus, based on its important pro-angiogenic effect, we hypothesized that PAI-1 may regulate lymphangiogenesis associated at least with metastatic dissemination of cancer cells. To address this issue, we studied the impact of PAI-1 deficiency in various murine models of tumoral lymphangiogenesis. Wild-type PAI-1 proficient mice were used as controls. We provide for the first time evidence that PAI-1 is dispensable for tumoral lymphangiogenesis associated with breast cancers either induced by mammary carcinoma cell injection or spontaneously appearing in transgenic mice expressing the polyomavirus middle T antigen (PymT) under the control of a mouse mammary tumor virus long-terminal repeat promoter (MMTV-LTR). We also investigated inflammation-related lymphatic vessel recruitment by using two inflammatory models. PAI-1 deficiency did neither affect the development of lymphangioma nor burn-induced corneal lymphangiogenesis. These novel data suggest that vascular remodelling associated with lymphangiogenesis and angiogenesis involve different molecular determinants. PAI-1 does not appear as a potential therapeutic target to counteract pathological lymphangiogenesis.
Journal Article
Pyruvate dehydrogenase kinase/lactate axis: a therapeutic target for neovascular age-related macular degeneration identified by metabolomics
2020
Neovascular age-related macular degeneration (nAMD) is the leading cause of blindness in aging populations. Here, we applied metabolomics to human sera of patients with nAMD during an active (exudative) phase of the pathology and found higher lactate levels and a shift in the lipoprotein profile (increased VLDL-LDL/HDL ratio). Similar metabolomics changes were detected in the sera of mice subjected to laser-induced choroidal neovascularization (CNV). In this experimental model, we provide evidence for two sites of lactate production: first, a local one in the injured eye, and second a systemic site associated with the recruitment of bone marrow–derived inflammatory cells. Mechanistically, lactate promotes the angiogenic response and M2-like macrophage accumulation in the eyes. The therapeutic potential of our findings is demonstrated by the pharmacological control of lactate levels through pyruvate dehydrogenase kinase (PDK) inhibition by dichloroacetic acid (DCA). Mice treated with DCA exhibited normalized lactate levels and lipoprotein profiles, and inhibited CNV formation. Collectively, our findings implicate the key role of the PDK/lactate axis in AMD pathogenesis and reveal that the regulation of PDK activity has potential therapeutic value in this ocular disease. The results indicate that the lipoprotein profile is a traceable pattern that is worth considering for patient follow-up.Key messagesLactate and lipoprotein profile are associated with the active phase of AMD and CNV development.Lactate is a relevant and functional metabolite correlated with AMD progression.Modulating lactate through pyruvate dehydrogenase kinase led to a decrease of CNV progression.Pyruvate dehydrogenase kinase is a new therapeutic target for neovascular AMD.
Journal Article
Resistance to retinopathy development in obese, diabetic and hypertensive ZSF1 rats: an exciting model to identify protective genes
2018
Diabetic retinopathy (DR) is one of the major complications of diabetes, which eventually leads to blindness. Up to date, no animal model has yet shown all the co-morbidities often observed in DR patients. Here, we investigated whether obese 42 weeks old ZSF1 rat, which spontaneously develops diabetes, hypertension and obesity, would be a suitable model to study DR. Although arteriolar tortuosity increased in retinas from obese as compared to lean (hypertensive only) ZSF1 rats, vascular density pericyte coverage, microglia number, vascular morphology and retinal thickness were not affected by diabetes. These results show that, despite high glucose levels, obese ZSF1 rats did not develop DR. Such observations prompted us to investigate whether the expression of genes, possibly able to contain DR development, was affected. Accordingly, mRNA sequencing analysis showed that genes (i.e.
Npy
and crystallins), known to have a protective role, were upregulated in retinas from obese ZSF1 rats. Lack of retina damage, despite obesity, hypertension and diabetes, makes the 42 weeks of age ZSF1 rats a suitable animal model to identify genes with a protective function in DR. Further characterisation of the identified genes and downstream pathways could provide more therapeutic targets for the treat DR.
Journal Article
Bone marrow-derived mesenchymal cells and MMP13 contribute to experimental choroidal neovascularization
by
Noel, Agnès
,
Foidart, Jean-Michel
,
Lecomte, Julie
in
Age related diseases
,
Angiogenesis
,
Animal models
2011
In this study, we evaluate the potential involvement of collagenase-3 (MMP13), a matrix metalloproteinase (MMP) family member, in the exudative form of age-related macular degeneration characterized by a neovascularisation into the choroid. RT-PCR analysis revealed that human neovascular membranes issued from patients with AMD expressed high levels of Mmp13. The contribution of MMP13 in choroidal neovascularization (CNV) formation was explored by using a murine model of laser-induced CNV and applying it to wild-type mice (WT) and Mmp13-deficient mice (Mmp13 ⁻/⁻ mice). Angiogenic and inflammatory reactions were explored by immunohistochemistry. The implication of bone marrow (BM)-derived cells was determined by BM engraftment into irradiated mice and by injecting mesenchymal stem cells (MSC) isolated from WT BM. The deficiency of Mmp13 impaired CNV formation which was fully restored by WT BM engraftment and partially rescued by several injections of WT MSC. The present study sheds light on a novel function of MMP13 during BM-dependent choroidal vascularization and provides evidence for a role for MSC in the pathogenesis of CNV.
Journal Article