Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
10 result(s) for "Ledermann, Raphael"
Sort by:
Stable, fluorescent markers for tracking synthetic communities and assembly dynamics
Background After two decades of extensive microbiome research, the current forefront of scientific exploration involves moving beyond description and classification to uncovering the intricate mechanisms underlying the coalescence of microbial communities. Deciphering microbiome assembly has been technically challenging due to their vast microbial diversity but establishing a synthetic community (SynCom) serves as a key strategy in unravelling this process. Achieving absolute quantification is crucial for establishing causality in assembly dynamics. However, existing approaches are primarily designed to differentiate a specific group of microorganisms within a particular SynCom. Results To address this issue, we have developed the differential fluorescent marking (DFM) strategy, employing three distinguishable fluorescent proteins in single and double combinations. Building on the mini-Tn 7 transposon, DFM capitalises on enhanced stability and broad applicability across diverse Proteobacteria species. The various DFM constructions are built using the pTn7-SCOUT plasmid family, enabling modular assembly, and facilitating the interchangeability of expression and antibiotic cassettes in a single reaction. DFM has no detrimental effects on fitness or community assembly dynamics, and through the application of flow cytometry, we successfully differentiated, quantified, and tracked a diverse six-member SynCom under various complex conditions like root rhizosphere showing a different colonisation assembly dynamic between pea and barley roots. Conclusions DFM represents a powerful resource that eliminates dependence on sequencing and/or culturing, thereby opening new avenues for studying microbiome assembly. CZiF6AaEp7jbjKaYRmvD15 Video Abstract
Bradyrhizobium diazoefficiens Requires Chemical Chaperones To Cope with Osmotic Stress during Soybean Infection
The Bradyrhizobium -soybean symbiosis is of great agricultural significance and serves as a model system for fundamental research in bacterium-plant interactions. While detailed molecular insight is available about mutual recognition and early nodule organogenesis, our understanding of the host-imposed conditions and the physiology of infecting rhizobia during the transition from a free-living state in the rhizosphere to endosymbiotic bacteroids is currently limited. When engaging in symbiosis with legume hosts, rhizobia are confronted with environmental changes, including nutrient availability and stress exposure. Genetic circuits allow responding to these environmental stimuli to optimize physiological adaptations during the switch from the free-living to the symbiotic life style. A pivotal regulatory system of the nitrogen-fixing soybean endosymbiont Bradyrhizobium diazoefficiens for efficient symbiosis is the general stress response (GSR), which relies on the alternative sigma factor σ EcfG . However, the GSR-controlled process required for symbiosis has not been identified. Here, we demonstrate that biosynthesis of trehalose is under GSR control, and mutants lacking the respective biosynthetic genes otsA and/or otsB phenocopy GSR-deficient mutants under symbiotic and selected free-living stress conditions. The role of trehalose as a cytoplasmic chemical chaperone and stress protectant can be functionally replaced in an otsA or otsB mutant by introducing heterologous genetic pathways for biosynthesis of the chemically unrelated compatible solutes glycine betaine and (hydroxy)ectoine. Alternatively, uptake of exogenously provided trehalose also restores efficient symbiosis and tolerance to hyperosmotic and hyperionic stress of otsA mutants. Hence, elevated cytoplasmic trehalose levels resulting from GSR-controlled biosynthesis are crucial for B. diazoefficiens cells to overcome adverse conditions during early stages of host infection and ensure synchronization with root nodule development. IMPORTANCE The Bradyrhizobium -soybean symbiosis is of great agricultural significance and serves as a model system for fundamental research in bacterium-plant interactions. While detailed molecular insight is available about mutual recognition and early nodule organogenesis, our understanding of the host-imposed conditions and the physiology of infecting rhizobia during the transition from a free-living state in the rhizosphere to endosymbiotic bacteroids is currently limited. In this study, we show that the requirement of the rhizobial general stress response (GSR) during host infection is attributable to GSR-controlled biosynthesis of trehalose. Specifically, trehalose is crucial for an efficient symbiosis by acting as a chemical chaperone to protect rhizobia from osmostress during host infection.
A software tool and strategy for peptidoglycomics, the high-resolution analysis of bacterial peptidoglycans via LC-MS/MS
Peptidoglycan is an essential component of the bacterial cell envelope—a mesh-like macromolecule that protects the bacterium from osmotic stress and its internal turgor pressure. The composition and architecture of peptidoglycan is heterogeneous and changes as bacteria grow, divide, and respond to their environment. Though peptidoglycan has long been studied via LC-MS/MS, the analysis of this data remains challenging as peptidoglycan’s unusual composition and branching can’t be handled by proteomics software. Here we describe user-friendly open-source tools and a web interface for building peptidoglycan databases, performing MS searches, and predicting the MS/MS fragmentation of muropeptides. We then use Rhizobium leguminosarum to describe a step-by-step strategy for the high-resolution analysis of peptidoglycan. The unprecedented detail of R. leguminosarum ’s peptidoglycan composition (>250 muropeptides) reveals even the subtlest remodelling between growth conditions. These new and easier to use tools enable more systematic analyses of peptidoglycan dynamics. Peptidoglycan (PG) is an essential component of the bacterial cell envelope, however, the structural characterization of PG via mass spectrometry remains challenging. Here, the authors develop PGFinder, an open-source web application for the LC-MS/MS analysis of peptidoglycan, and describe a step-by-step analysis strategy using Rhizobium leguminosarum as a model.
Lifestyle adaptations of Rhizobium from rhizosphere to symbiosis
By analyzing successive lifestyle stages of a model Rhizobium–legume symbiosis using mariner-based transposon insertion sequencing (INSeq), we have defined the genes required for rhizosphere growth, root colonization, bacterial infection, N₂-fixing bacteroids, and release from legume (pea) nodules. While only 27 genes are annotated as nif and fix in Rhizobium leguminosarum, we show 603 genetic regions (593 genes, 5 transfer RNAs, and 5 RNA features) are required for the competitive ability to nodulate pea and fix N₂. Of these, 146 are common to rhizosphere growth through to bacteroids. This large number of genes, defined as rhizosphere-progressive, highlights how critical successful competition in the rhizosphere is to subsequent infection and nodulation. As expected, there is also a large group (211) specific for nodule bacteria and bacteroid function. Nodule infection and bacteroid formation require genes for motility, cell envelope restructuring, nodulation signaling, N₂ fixation, and metabolic adaptation. Metabolic adaptation includes urea, erythritol and aldehyde metabolism, glycogen synthesis, dicarboxylate metabolism, and glutamine synthesis (GlnII). There are 17 separate lifestyle adaptations specific to rhizosphere growth and 23 to root colonization, distinct from infection and nodule formation. These results dramatically highlight the importance of competition at multiple stages of a Rhizobium–legume symbiosis.
Conditional sanctioning in a legume–Rhizobium mutualism
Legumes are high in protein and form a valuable part of human diets due to their interaction with symbiotic nitrogen-fixing bacteria known as rhizobia. Plants house rhizobia in specialized root nodules and provide the rhizobia with carbon in return for nitrogen. However, plants usually housemultiple rhizobial strains that vary in their fixation ability, so the plant faces an investment dilemma. Plants are known to sanction strains that do not fix nitrogen, but nonfixers are rare in field settings, while intermediate fixers are common. Here, we modeled how plants should respond to an intermediate fixer that was otherwise isogenic and tested model predictions using pea plants. Intermediate fixers were only tolerated when a better strain was not available. In agreement with model predictions, nodules containing the intermediate-fixing strain were large and healthy when the only alternative was a nonfixer, but nodules of the intermediate-fixing strain were small and white when the plant was coinoculated with a more effective strain. The reduction in nodule size was preceded by a lower carbon supply to the nodule even before differences in nodule size could be observed. Sanctioned nodules had reduced rates of nitrogen fixation, and in later developmental stages, sanctioned nodules contained fewer viable bacteria than nonsanctioned nodules. This indicates that legumes can make conditional decisions, most likely by comparing a local nodule-dependent cue of nitrogen output with a global cue, giving them remarkable control over their symbiotic partners.
Rhizobium determinants of rhizosphere persistence and root colonization
Bacterial persistence in the rhizosphere and colonization of root niches are critical for the establishment of many beneficial plant–bacteria interactions including those between Rhizobium leguminosarum and its host legumes. Despite this, most studies on R. leguminosarum have focused on its symbiotic lifestyle as an endosymbiont in root nodules. Here, we use random barcode transposon sequencing to assay gene contributions of R. leguminosarum during competitive growth in the rhizosphere and colonization of various plant species. This facilitated the identification of 189 genes commonly required for growth in diverse plant rhizospheres, mutation of 111 of which also affected subsequent root colonization (rhizosphere progressive), and a further 119 genes necessary for colonization. Common determinants reveal a need to synthesize essential compounds (amino acids, ribonucleotides, and cofactors), adapt metabolic function, respond to external stimuli, and withstand various stresses (such as changes in osmolarity). Additionally, chemotaxis and flagella-mediated motility are prerequisites for root colonization. Many genes showed plant-specific dependencies highlighting significant adaptation to different plant species. This work provides a greater understanding of factors promoting rhizosphere fitness and root colonization in plant-beneficial bacteria, facilitating their exploitation for agricultural benefit.
Hopanoids confer robustness to physicochemical variability in the niche of the plant symbiont Bradyrhizobium diazoefficiens
Climate change poses a threat to soil health and agriculture, but the potential effects of climate change on soil bacteria that can help maintain soil health are understudied. Rhizobia are a group of bacteria that increase soil nitrogen content through a symbiosis with legume plants. The soil and symbiosis are potentially stressful environments, and the soil will likely become even more stressful as the climate changes. Many rhizobia within the bradyrhizobia clade, like Bradyrhizobium diazoefficiens, possess the genetic capacity to synthesize hopanoids, steroid-like lipids similar in structure and function to cholesterol. Hopanoids are known to protect against stresses relevant to the niche of B. diazoefficiens. Paradoxically, mutants unable to synthesize the extended class of hopanoids participate in similarly successful symbioses compared to the wild type, despite being delayed in root nodule initiation. Here, we show that in B. diazoefficiens, the in vitro growth defects of extended hopanoid deficient mutants can be at least partially compensated for by the physicochemical environment, specifically by optimal osmotic and divalent cation concentrations. Through biophysical measurements, we show that extended hopanoids confer robustness to environmental variability. These results help explain the discrepancy between previous in vitro and in planta results and indicate that hopanoids may provide a greater fitness advantage to rhizobia in the variable soil environment than the more controlled environment within root nodules. To improve the legume-rhizobia symbiosis through either bioengineering or strain selection, it will be important to consider the full lifecycle of rhizobia, from the soil to the symbiosis.
Lifestyle adaptations of Rhizobium from rhizosphere to symbiosis
By analyzing successive lifestyle stages of a model Rhizobium-legume symbiosis using mariner-based transposon insertion sequencing (INSeq), we have defined the genes required for rhizosphere growth, root colonization, bacterial infection, N2-fixing bacteroids and release from legume (pea) nodules. While only 27 genes are annotated as nif and fix in Rhizobium leguminosarum, we show 603 genetic regions (593 genes, 5 tRNAs and 5 RNA features) are required for the competitive ability to nodulate pea and fix N2. Of these, 146 are common to rhizosphere growth through to bacteroids. This large number of genes, defined as rhizosphere-progressive, highlights how critical successful competition in the rhizosphere is to subsequent infection and nodulation. As expected, there is also a large group (211) specific for nodule bacteria and bacteroid function. Nodule infection and bacteroid formation require genes for motility, cell envelope restructuring, nodulation signalling, N2 fixation, and metabolic adaptation. Metabolic adaptation includes urea, erythritol and aldehyde metabolism, glycogen synthesis, dicarboxylate metabolism and glutamine synthesis (GlnII). There are separate lifestyle adaptations specific to rhizosphere growth (17) and root colonization (23), distinct from infection and nodule formation. These results dramatically highlight the importance of competition at multiple stages of a Rhizobium-legume symbiosis. Rhizobia are soil-dwelling bacteria that form symbioses with legumes and provide biologically useable nitrogen as ammonium for the host plant. High-throughput DNA sequencing has led to a rapid expansion in publication of complete genomes for numerous rhizobia, but analysis of gene function increasingly lags gene discovery. Mariner-based transposon insertion sequencing (INSeq) has allowed us to characterize the fitness contribution of bacterial genes and determine those functionally important in a Rhizobium-legume symbiosis at multiple stages of development.
Antiviral Immune Responses in Gene-Targeted Mice Expressing the Immunoglobulin Heavy Chain of Virus-Neutralizing Antibodies
Two gene-targeted immunoglobulin heavy chain transgenic mouse strains, TgH(KL25) and TgH(VI10), expressing neutralizing specificities for lymphocytic choriomeningitis virus and vesicular stomatitis virus, respectively, have been generated. Three days after lymphocytic choriomeningitis virus infection, TgH(KL25) mice showed a thymus-independent neutralizing IgM response followed by thymus-dependent (TD) IgG. In contrast, WT mice mounted only a TD IgG response around day 80. These observations indicated that not only structural properties of the virus but also immunological parameters such as the frequency of B cells were indicative for the induction of thymus-independent versus TD Ig responses.$Na\\ddot\\imath ve$vesicular stomatitis virus-specific Ig heavy chain transgenic mice displayed greatly elevated natural antibody titers. However, despite these high$na\\ddot\\imath ve$titers, de novo activation of$na\\ddot\\imath ve\\>CD4^+$T and B cells was not blocked. Therefore, B cells giving rise to natural antibodies do not participate in virus-induced antibody responses.