Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
27,277
result(s) for
"Lee, An Yong"
Sort by:
Imaging inflammation using an activated macrophage probe with Slc18b1 as the activation-selective gating target
2019
Activated macrophages have the potential to be ideal targets for imaging inflammation. However, probe selectivity over non-activated macrophages and probe delivery to target tissue have been challenging. Here, we report a small molecule probe specific for activated macrophages, called CDg16, and demonstrate its application to visualizing inflammatory atherosclerotic plaques in vivo. Through a systematic transporter screen using a CRISPR activation library, we identify the orphan transporter Slc18b1/SLC18B1 as the gating target of CDg16.
Attempts to image activated macrophages in vivo have been hampered by selectivity and delivery problems. Here the authors develop a small molecule fluorescent probe specific to activated M1 and M2 macrophages, identify the orphan receptor Slc18b1/SLC18B1 as the mechanism of uptake, and use it to image atherosclerosis in mice.
Journal Article
Effect of Antioxidants and Apoptosis Inhibitors on Cryopreservation of Murine Germ Cells Enriched for Spermatogonial Stem Cells
2016
Spermatogonial stem cells (SSCs) are germline stem cells that serve as the foundation of spermatogenesis to maintain fertility throughout a male's lifetime. To treat male infertility using stem cell banking systems and transplantation, it is important to be able to preserve SSCs for long periods of time. Therefore, this study was conducted to develop an optimal cryopreservation protocol for SSCs using antioxidants and apoptosis inhibitors in freezing medium. No differences were observed compared to controls when SSCs were cryopreserved in the presence of apoptosis inhibitors by themselves. However, mouse germ cells cryopreserved in basal medium containing the antioxidant hypotaurine (14 mM) resulted in significantly greater proliferation potential and mitochondrial activity. Furthermore, treatment groups with combinations containing 200 mM trehalose and 14 mM hypotaurine showed higher proliferation rates compared to controls. In addition, several serum free conditions were evaluated for SSC cryopreservation. Treatment media containing 10% or 20% knockout serum replacement resulted in similar cryopreservation results compared to media containing FBS. SSC transplantation was also performed to confirm the functionality of SSCs frozen in 14 mM hypotaurine. Donor SSCs formed normal spermatogenic colonies and sperm in the recipient testis. These data indicate that inclusion of 14 mM hypotaurine in cryopreservation media is an effective way to efficiently cryopreserve germ cells enriched for SSCs and that knockout serum replacement can replace FBS in germ cell cryopreservation media.
Journal Article
Cryopreservation in Trehalose Preserves Functional Capacity of Murine Spermatogonial Stem Cells
2013
Development of techniques to isolate, culture, and transplant human spermatogonial stem cells (SSCs) has the future potential to treat male infertility. To maximize the efficiency of these techniques, methods for SSC cryopreservation need to be developed to bank SSCs for extended periods of time. Although, it has been demonstrated that SSCs can reinitiate spermatogenesis after freezing, optimal cryopreservation protocols that maximize SSC proliferative capacity post-thaw have not been identified. The objective of this study was to develop an efficient cryopreservation technique for preservation of SSCs. To identify efficient cryopreservation methods for long-term preservation of SSCs, isolated testis cells enriched for SSCs were placed in medium containing dimethyl sulfoxide (DMSO) or DMSO and trehalose (50 mM, 100 mM, or 200 mM), and frozen in liquid nitrogen for 1 week, 1 month, or 3 months. Freezing in 50 mM trehalose resulted in significantly higher cell viability compared to DMSO at all thawing times and a higher proliferation rate compared to DMSO for the 1 week freezing period. Freezing in 200 mM trehalose did not result in increased cell viability; however, proliferation activity was significantly higher and percentage of apoptotic cells was significantly lower compared to DMSO after freezing for 1 and 3 months. To confirm the functionality of SSCs frozen in 200 mM trehalose, SSC transplantation was performed. Donor SSCs formed spermatogenic colonies and sperm capable of generating normal progeny. Collectively, these results indicate that freezing in DMSO with 200 mM trehalose serves as an efficient method for the cryopreservation of SSCs.
Journal Article
Liver’s influence on the brain through the action of bile acids
2023
The liver partakes as a sensor and effector of peripheral metabolic changes and a regulator of systemic blood and nutrient circulation. As such, abnormalities arising from liver dysfunction can influence the brain in multiple ways, owing to direct and indirect bilateral communication between the liver and the brain. Interestingly, altered bile acid composition resulting from perturbed liver cholesterol metabolism influences systemic inflammatory responses, blood-brain barrier permeability, and neuron synaptic functions. Furthermore, bile acids produced by specific bacterial species may provide a causal link between dysregulated gut flora and neurodegenerative disease pathology through the gut-brain axis. This review will cover the role of bile acids—an often-overlooked category of active metabolites—in the development of neurological disorders associated with neurodegeneration. Further studies into bile acid signaling in the brain may provide insights into novel treatments against neurological disorders.
Journal Article
Petasites japonicus Stimulates the Proliferation of Mouse Spermatogonial Stem Cells
2015
Oriental natural plants have been used as medical herbs for the treatment of various diseases for over 2,000 years. In this study, we evaluated the effect of several natural plants on the preservation of male fertility by assessing the ability of plant extracts to stimulate spermatogonial stem cell (SSC) proliferation by using a serum-free culture method. In vitro assays showed that Petasites japonicus extracts, especially the butanol fraction, have a significant effect on germ cells proliferation including SSCs. The activity of SSCs cultured in the presence of the Petasites japonicus butanol fraction was confirmed by normal colony formation and spermatogenesis following germ cell transplantation of the treated SSCs. Our findings could lead to the discovery of novel factors that activate SSCs and could be useful for the development of technologies for the prevention of male infertility.
Journal Article
Targeting Heme Oxygenase 2 (HO2) with TiNIR, a Theragnostic Approach for Managing Metastatic Non-Small Cell Lung Cancer
2024
Despite notable advancements in cancer therapeutics, metastasis remains a primary obstacle impeding a successful prognosis. Our prior study has identified heme oxygenase 2 (HO2) as a promising therapeutic biomarker for the aggressive subsets within tumor. This study aims to systematically evaluate HO2 as a therapeutic target of cancer, with a specific emphasis on its efficacy in addressing cancer metastasis. Through targeted inhibition of HO2 by TiNIR (tumor-initiating cell probe with near infrared), we observed a marked increase in reactive oxygen species. This, in turn, orchestrated the modulation of AKT and cJUN activation, culminating in a substantial attenuation of both proliferation and migration within a metastatic cancer cell model. Furthermore, in a mouse model, clear inhibition of cancer metastasis was unequivocally demonstrated with an HO2 inhibitor administration. These findings underscore the therapeutic promise of targeting HO2 as a strategic intervention to impede cancer metastasis, enhancing the effectiveness of cancer treatments.
Journal Article
Development of a Multi-Layer Marking Toolkit for Layout-Printing Automation at Construction Sites
by
Park, Eun Soo
,
Seo, Hee Chang
,
Lee, An Yong
in
Accuracy
,
Automation
,
Building information modeling
2022
In this study, the development of a multi-layer marking toolkit was investigated to improve construction quality and mitigate the problem of irregular designs in the layout-printing work performed at construction sites. The quality of conventional layout-printing work is dependent on the skill of the worker, and construction quality can suffer owing to inconsistencies in drawings resulting from human error. In this study, these problems were analyzed, and a construction-site-layout-marking toolkit apparatus and mechanical unit, with a structure that allowed for multi-layer installation for automated implementation at construction sites, were developed. The marking toolkit and mechanical unit with the multi-layer structure were developed in a modular form so that each module can operate independently. Furthermore, each module was developed in manual mode to improve the system by acquiring information on the movement of the marking toolkit and multi-layer structure. Additionally, data on the layout-printing method was developed by connecting the system via Ethernet and operating a wireless joystick. Finally, experiments were performed on a road surface covered with B4 paper and concrete panels to confirm the operational feasibility of the system, which was developed to operate manually.
Journal Article
Effects of paracrine factors on CD24 expression and neural differentiation of male germline stem cells
2015
Spermatogonial stem cells (SSCs) are adult male germ cells that develop after birth. Throughout the lifetime of an organism, SSCs sustain spermatogenesis through self-renewal and produce daughter cells that differentiate into spermatozoa. Several studies have demonstrated that SSCs can acquire pluripotency under appropriate culture conditions, thus becoming multipotent germline stem cells (mGSCs) that express markers of pluripotency in culture and form teratomas following transplantation into immunodeficient mice. In the present study, we generated neural precursor cells expressing CD24, a neural precursor marker, from pluripotent stem cell lines and demonstrated that these cells effectively differentiated along a neural lineage in vitro. In addition, we found that paracrine factors promoted CD24 expression during the neural differentiation of mGSCs. Our results indicated that the expression of CD24, enhanced by a combination of retinoic acid (RA), noggin and fibroblast growth factor 8 (FGF8) under serum-free conditions promoted neural precursor differentiation. Using a simple cell sorting method, we were able to collect neural precursor cells with the potential to differentiate from mGSCs into mature neurons and astrocytes in vitro.
Journal Article
Efficient enhancement of lentiviral transduction efficiency in murine spermatogonial stem cells
by
Kim, K.J., Chung-Ang University, Ansung, Republic of Korea
,
Cho, C.M., BET Research Institute, Chung-Ang University, Ansung, Republic of Korea
,
Kim, C.G., Hanyang University, Seoul, Republic of Korea
in
Biochemistry
,
Biomedical and Life Sciences
,
Biomedicine
2012
Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis throughout postnatal life in male and have the ability to transmit genetic information to the subsequent generation. In this study, we have optimized the transduction efficiency of SSCs using a lentiviral vector by considering different multiplicity of infection (MOI), duration of infection, presence or absence of feeder layer and polycationic agents. We tested MOI of 5, 10 or 20 and infection duration of 6, 9 or 12 h respectively. After infection, cells were cultured for 1 week and as a result, the number of transduced SSCs increased significantly for MOI of 5 and 10 with 6 h of infection. When the same condition (MOI of 5 with 6 hours) was applied in presence or absence of STO feeder layer and infected SSCs were cultured for 3 weeks on the STO feeder layer, a significant increase in the number of transduced cells was observed for without the feeder layer during infection. We subsequently studied the effects of polycationic agents, polybrene and dioctadecylamidoglycyl spermine (DOGS), on the transduction efficiency. Compared with the polybrene treatment, the recovery rate of the transduced SSCs was significantly higher for the DOGS treatment. Therefore, our optimization study could contribute to the enhancement of germ-line modification of SSCs using lentiviral vectors and in generation of transgenic animals.
Journal Article