Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Lee, Changhon"
Sort by:
Structural specificities of cell surface β-glucan polysaccharides determine commensal yeast mediated immuno-modulatory activities
Yeast is an integral part of mammalian microbiome, and like commensal bacteria, has the potential of being harnessed to influence immunity in clinical settings. However, functional specificities of yeast-derived immunoregulatory molecules remain elusive. Here we find that while under steady state, β-1,3-glucan-containing polysaccharides potentiate pro-inflammatory properties, a relatively less abundant class of cell surface polysaccharides, dubbed mannan/β-1,6-glucan-containing polysaccharides (MGCP), is capable of exerting potent anti-inflammatory effects to the immune system. MGCP, in contrast to previously identified microbial cell surface polysaccharides, through a Dectin1-Cox2 signaling axis in dendritic cells, facilitates regulatory T (Treg) cell induction from naïve T cells. Furthermore, through a TLR2-dependent mechanism, it restrains Th1 differentiation of effector T cells by suppressing IFN-γ expression. As a result, administration of MGCP display robust suppressive capacity towards experimental inflammatory disease models of colitis and experimental autoimmune encephalomyelitis (EAE) in mice, thereby highlighting its potential therapeutic utility against clinically relevant autoimmune diseases. Yeast form part of the host microbiome with known impact on host immunity. Here the authors identify and investigate the impact of commensal yeast-derived polysaccharides in modulating host inflammation, and show its potential for inhibiting inflammation in a number of models of inflammatory diseases.
Gut microbiota and brain-resident CD4+ T cells shape behavioral outcomes in autism spectrum disorder
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by alterations in social, repetitive, and anxiety-like behaviors. While emerging evidence suggest a gut-brain etiology in ASD, the underlying mechanisms remain unclear. To dissect this axis, we developed a germ-free BTBR mouse model for ASD. The absence of gut microbiota in male mice ameliorates ASD-associated behaviors and reduces populations of inflammatory brain-resident T cells. Additionally, CD4 + T cell depletion mitigates neuroinflammation and ASD behaviors, suggesting a gut-immune-brain axis. We identify several microbial and metabolic regulators of ASD, particularly those relevant to the glutamate/GABA ratio and 3-hydroxyglutaric acid. Using an in silico metabolite prediction model, we propose Limosilactobacillus reuteri IMB015 (IMB015) to be a probiotic candidate. Administration of IMB015 reduces the glutamate/GABA ratio and neuroinflammation, resulting in improved behaviors. Here we report a gut-immune-brain axis in which the gut microbiota and its metabolites can modulate brain-resident immune cells and ASD-associated behaviors. Using a germ-free BTBR mouse model of ASD-like behaviors, here the researchers demonstrated that the absence of gut microbiota significantly reduced social deficits, repetitive behaviors, and neuroinflammation.
Probiotic Consortium Confers Synergistic Anti-Inflammatory Effects in Inflammatory Disorders
The composition and diversity of gut microbiota significantly influence the immune system and are linked to various diseases, including inflammatory and allergy disorders. While considerable research has focused on exploring single bacterial species or consortia, the optimal strategies for microbiota-based therapeutics remain underexplored. Specifically, the comparative effectiveness of bacterial consortia versus individual species warrants further investigation. In our study, we assessed the impact of the bacterial consortium MPRO, comprising Lactiplantibacillus plantarum HY7712, Bifidobacterium animalis ssp. lactis HY8002, and Lacticaseibacillus casei HY2782, in comparison to its individual components. The administration of MPRO demonstrated enhanced therapeutic efficacy in experimental models of atopic dermatitis and inflammatory colitis when compared to single strains. MPRO exhibited the ability to dampen inflammatory responses and alter the gut microbial landscape significantly. Notably, MPRO administration led to an increase in intestinal CD103+CD11b+ dendritic cells, promoting the induction of regulatory T cells and the robust suppression of inflammation in experimental disease settings. Our findings advocate the preference for bacterial consortia over single strains in the treatment of inflammatory disorders, carrying potential clinical relevance.