Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
328 result(s) for "Lee, Clarence"
Sort by:
Rapid 16S rRNA Next-Generation Sequencing of Polymicrobial Clinical Samples for Diagnosis of Complex Bacterial Infections
Classifying individual bacterial species comprising complex, polymicrobial patient specimens remains a challenge for culture-based and molecular microbiology techniques in common clinical use. We therefore adapted practices from metagenomics research to rapidly catalog the bacterial composition of clinical specimens directly from patients, without need for prior culture. We have combined a semiconductor deep sequencing protocol that produces reads spanning 16S ribosomal RNA gene variable regions 1 and 2 (∼360 bp) with a de-noising pipeline that significantly improves the fraction of error-free sequences. The resulting sequences can be used to perform accurate genus- or species-level taxonomic assignment. We explore the microbial composition of challenging, heterogeneous clinical specimens by deep sequencing, culture-based strain typing, and Sanger sequencing of bulk PCR product. We report that deep sequencing can catalog bacterial species in mixed specimens from which usable data cannot be obtained by conventional clinical methods. Deep sequencing a collection of sputum samples from cystic fibrosis (CF) patients reveals well-described CF pathogens in specimens where they were not detected by standard clinical culture methods, especially for low-prevalence or fastidious bacteria. We also found that sputa submitted for CF diagnostic workup can be divided into a limited number of groups based on the phylogenetic composition of the airway microbiota, suggesting that metagenomic profiling may prove useful as a clinical diagnostic strategy in the future. The described method is sufficiently rapid (theoretically compatible with same-day turnaround times) and inexpensive for routine clinical use.
mRNA-Seq whole-transcriptome analysis of a single cell
Previous whole-transcriptome analysis by RNA-Seq required hundreds of thousands of cells or microgram amounts of RNA. A modification of the cDNA library preparation method now allows unbiased capture of the majority of genes expressed in a single blastomere and oocyte. cDNA sequencing on the SOLiD platform facilitates the quantitative analysis of the transcriptome complexity in a single cell. Next-generation sequencing technology is a powerful tool for transcriptome analysis. However, under certain conditions, only a small amount of material is available, which requires more sensitive techniques that can preferably be used at the single-cell level. Here we describe a single-cell digital gene expression profiling assay. Using our mRNA-Seq assay with only a single mouse blastomere, we detected the expression of 75% (5,270) more genes than microarray techniques and identified 1,753 previously unknown splice junctions called by at least 5 reads. Moreover, 8–19% of the genes with multiple known transcript isoforms expressed at least two isoforms in the same blastomere or oocyte, which unambiguously demonstrated the complexity of the transcript variants at whole-genome scale in individual cells. Finally, for Dicer1 −/− and Ago2 −/− ( Eif2c2 −/− ) oocytes, we found that 1,696 and 1,553 genes, respectively, were abnormally upregulated compared to wild-type controls, with 619 genes in common.
Spatial and temporal diversity in genomic instability processes defines lung cancer evolution
Spatial and temporal dissection of the genomic changes occurring during the evolution of human non–small cell lung cancer (NSCLC) may help elucidate the basis for its dismal prognosis. We sequenced 25 spatially distinct regions from seven operable NSCLCs and found evidence of branched evolution, with driver mutations arising before and after subclonal diversification. There was pronounced intratumor heterogeneity in copy number alterations, translocations, and mutations associated with APOBEC cytidine deaminase activity. Despite maintained carcinogen exposure, tumors from smokers showed a relative decrease in smoking-related mutations over time, accompanied by an increase in APOBEC-associated mutations. In tumors from former smokers, genome-doubling occurred within a smoking-signature context before subclonal diversification, which suggested that a long period of tumor latency had preceded clinical detection. The regionally separated driver mutations, coupled with the relentless and heterogeneous nature of the genome instability processes, are likely to confound treatment success in NSCLC.
Stem cell transcriptome profiling via massive-scale mRNA sequencing
Application of next-generation sequencing using the ABI SOLiD technology to mammalian transcriptome analysis enabled a survey of the content, the complexity and the developmental dynamics of the embryonic stem cell transcriptome in the mouse. Also in this issue, Mortazavi et al . report Illumina technology–based RNA-Seq analysis of the mouse transcriptome in three different tissues. We developed a massive-scale RNA sequencing protocol, short quantitative random RNA libraries or SQRL, to survey the complexity, dynamics and sequence content of transcriptomes in a near-complete fashion. This method generates directional, random-primed, linear cDNA libraries that are optimized for next-generation short-tag sequencing. We surveyed the poly(A) + transcriptomes of undifferentiated mouse embryonic stem cells (ESCs) and embryoid bodies (EBs) at an unprecedented depth (10 Gb), using the Applied Biosystems SOLiD technology. These libraries capture the genomic landscape of expression, state-specific expression, single-nucleotide polymorphisms (SNPs), the transcriptional activity of repeat elements, and both known and new alternative splicing events. We investigated the impact of transcriptional complexity on current models of key signaling pathways controlling ESC pluripotency and differentiation, highlighting how SQRL can be used to characterize transcriptome content and dynamics in a quantitative and reproducible manner, and suggesting that our understanding of transcriptional complexity is far from complete.
Cell-free DNA reveals distinct pathology of multisystem inflammatory syndrome in children
Multisystem inflammatory syndrome in children (MIS-C) is a rare but life-threatening hyperinflammatory condition induced by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes pediatric COVID-19 (pCOVID-19). The relationship of the systemic tissue injury to the pathophysiology of MIS-C is poorly defined. We leveraged the high sensitivity of epigenomics analyses of plasma cell-free DNA (cfDNA) and plasma cytokine measurements to identify the spectrum of tissue injury and glean mechanistic insights. Compared with pediatric healthy controls (pHCs) and patients with pCOVID-19, patients with MIS-C had higher levels of cfDNA primarily derived from innate immune cells, megakaryocyte-erythroid precursor cells, and nonhematopoietic tissues such as hepatocytes, cardiac myocytes, and kidney cells. Nonhematopoietic tissue cfDNA levels demonstrated significant interindividual variability, consistent with the heterogenous clinical presentation of MIS-C. In contrast, adaptive immune cell-derived cfDNA levels were comparable in MIS-C and pCOVID-19 patients. Indeed, the cfDNA of innate immune cells in patients with MIS-C correlated with the levels of innate immune inflammatory cytokines and nonhematopoietic tissue-derived cfDNA, suggesting a primarily innate immunity-mediated response to account for the multisystem pathology. These data provide insight into the pathogenesis of MIS-C and support the value of cfDNA as a sensitive biomarker to map tissue injury in MIS-C and likely other multiorgan inflammatory conditions.
A small-cell lung cancer genome with complex signatures of tobacco exposure
Cancer is driven by mutation. Worldwide, tobacco smoking is the principal lifestyle exposure that causes cancer, exerting carcinogenicity through >60 chemicals that bind and mutate DNA. Using massively parallel sequencing technology, we sequenced a small-cell lung cancer cell line, NCI-H209, to explore the mutational burden associated with tobacco smoking. A total of 22,910 somatic substitutions were identified, including 134 in coding exons. Multiple mutation signatures testify to the cocktail of carcinogens in tobacco smoke and their proclivities for particular bases and surrounding sequence context. Effects of transcription-coupled repair and a second, more general, expression-linked repair pathway were evident. We identified a tandem duplication that duplicates exons 3–8 of CHD7 in frame, and another two lines carrying PVT1–CHD7 fusion genes, indicating that CHD7 may be recurrently rearranged in this disease. These findings illustrate the potential for next-generation sequencing to provide unprecedented insights into mutational processes, cellular repair pathways and gene networks associated with cancer. Cancer genomes compared The two cancer genome sequences presented in this issue demonstrate how next-generation sequencing technologies can inform us about mutational processes, repair pathways and gene networks associated with cancer development. First, the genome of a cell line derived from a bone marrow metastasis in a patient who had small-cell lung cancer. This cancer is typical of the type induced by smoking, and the sequence contains mutation signatures characteristic of some of the more than 60 carcinogens present in tobacco smoke. The second paper compares the whole genome sequence of a melanoma cell line to a lymphoblastoid cell line from the same individual. This, the first complete mutational analysis of a solid tumour, reveals a dominant mutational signature reflecting DNA damage due to exposure to ultraviolet light. Tobacco smoke contains more than sixty carcinogens that bind and mutate DNA. Here, massively parallel sequencing technology is used to sequence a small-cell lung cancer cell line, exploring the mutational burden associated with tobacco smoking. Multiple mutation signatures from the cocktail of carcinogens in tobacco smoke are found, as well as evidence of transcription-coupled repair and another, more general, expression-linked repair pathway.
PIWI silencing mechanism involving the retrotransposon nimbus orchestrates resistance to infection with Schistosoma mansoni in the snail vector, Biomphalaria glabrata
Schistosomiasis remains widespread in many regions despite efforts at its elimination. By examining changes in the transcriptome at the host-pathogen interface in the snail Biomphalaria glabrata and the blood fluke Schistosoma mansoni, we previously demonstrated that an early stress response in juvenile snails, manifested by induction of heat shock protein 70 (Hsp 70) and Hsp 90 and of the reverse transcriptase (RT) domain of the B. glabrata non-LTR- retrotransposon, nimbus, were critical for B. glabrata susceptibility to S. mansoni. Subsequently, juvenile B. glabrata BS-90 snails, resistant to S. mansoni at 25°C become susceptible by the F2 generation when maintained at 32°C, indicating an epigenetic response. To better understand this plasticity in susceptibility of the BS-90 snail, mRNA sequences were examined from S. mansoni exposed juvenile BS-90 snails cultured either at 25°C (non-permissive temperature) or 32°C (permissive). Comparative analysis of transcriptomes from snails cultured at the non-permissive and permissive temperatures revealed that whereas stress related transcripts dominated the transcriptome of susceptible BS-90 juvenile snails at 32°C, transcripts encoding proteins with a role in epigenetics, such as PIWI (BgPiwi), chromobox protein homolog 1 (BgCBx1), histone acetyltransferase (BgHAT), histone deacetylase (BgHDAC) and metallotransferase (BgMT) were highly expressed in those cultured at 25°C. To identify robust candidate transcripts that will underscore the anti-schistosome phenotype in B. glabrata, further validation of the differential expression of the above transcripts was performed by using the resistant BS-90 (25°C) and the BBO2 susceptible snail stock whose genome has now been sequenced and represents an invaluable resource for molecular studies in B. glabrata. A role for BgPiwi in B. glabrata susceptibility to S. mansoni, was further examined by using siRNA corresponding to the BgPiwi encoding transcript to suppress expression of BgPiwi, rendering the resistant BS-90 juvenile snail susceptible to infection at 25°C. Given transposon silencing activity of PIWI as a facet of its role as guardian of the integrity of the genome, we examined the expression of the nimbus RT encoding transcript at 120 min after infection of resistant BS90 piwi-siRNA treated snails. We observed that nimbus RT was upregulated, indicating that modulation of the transcription of the nimbus RT was associated with susceptibility to S. mansoni in BgPiwi-siRNA treated BS-90 snails. Furthermore, treatment of susceptible BBO2 snails with the RT inhibitor lamivudine, before exposure to S. mansoni, blocked S. mansoni infection concurrent with downregulation of the nimbus RT transcript and upregulation of the BgPiwi encoding transcript in the lamivudine-treated, schistosome-exposed susceptible snails. These findings support a role for the interplay of BgPiwi and nimbus in the epigenetic modulation of plasticity of resistance/susceptibility in the snail-schistosome relationship.
Demographically-Based Evaluation of Genomic Regions under Selection in Domestic Dogs
Controlling for background demographic effects is important for accurately identifying loci that have recently undergone positive selection. To date, the effects of demography have not yet been explicitly considered when identifying loci under selection during dog domestication. To investigate positive selection on the dog lineage early in the domestication, we examined patterns of polymorphism in six canid genomes that were previously used to infer a demographic model of dog domestication. Using an inferred demographic model, we computed false discovery rates (FDR) and identified 349 outlier regions consistent with positive selection at a low FDR. The signals in the top 100 regions were frequently centered on candidate genes related to brain function and behavior, including LHFPL3, CADM2, GRIK3, SH3GL2, MBP, PDE7B, NTAN1, and GLRA1. These regions contained significant enrichments in behavioral ontology categories. The 3rd top hit, CCRN4L, plays a major role in lipid metabolism, that is supported by additional metabolism related candidates revealed in our scan, including SCP2D1 and PDXC1. Comparing our method to an empirical outlier approach that does not directly account for demography, we found only modest overlaps between the two methods, with 60% of empirical outliers having no overlap with our demography-based outlier detection approach. Demography-aware approaches have lower-rates of false discovery. Our top candidates for selection, in addition to expanding the set of neurobehavioral candidate genes, include genes related to lipid metabolism, suggesting a dietary target of selection that was important during the period when proto-dogs hunted and fed alongside hunter-gatherers.