Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
121 result(s) for "Lee, Doheon"
Sort by:
Identifying prognostic subgroups of luminal-A breast cancer using deep autoencoders and gene expressions
Luminal-A breast cancer is the most frequently occurring subtype which is characterized by high expression levels of hormone receptors. However, some luminal-A breast cancer patients suffer from intrinsic and/or acquired resistance to endocrine therapies which are considered as first-line treatments for luminal-A breast cancer. This heterogeneity within luminal-A breast cancer has required a more precise stratification method. Hence, our study aims to identify prognostic subgroups of luminal-A breast cancer. In this study, we discovered two prognostic subgroups of luminal-A breast cancer (BPS-LumA and WPS-LumA) using deep autoencoders and gene expressions. The deep autoencoders were trained using gene expression profiles of 679 luminal-A breast cancer samples in the METABRIC dataset. Then, latent features of each samples generated from the deep autoencoders were used for K-Means clustering to divide the samples into two subgroups, and Kaplan-Meier survival analysis was performed to compare prognosis (recurrence-free survival) between them. As a result, the prognosis between the two subgroups were significantly different (p-value = 5.82E-05; log-rank test). This prognostic difference between two subgroups was validated using gene expression profiles of 415 luminal-A breast cancer samples in the TCGA BRCA dataset (p-value = 0.004; log-rank test). Notably, the latent features were superior to the gene expression profiles and traditional dimensionality reduction method in terms of discovering the prognostic subgroups. Lastly, we discovered that ribosome-related biological functions could be potentially associated with the prognostic difference between them using differentially expressed genes and co-expression network analysis. Our stratification method can be contributed to understanding a complexity of luminal-A breast cancer and providing a personalized medicine.
Context-aware multi-token concept recognition of biological entities
Background Concept recognition is a term that corresponds to the two sequential steps of named entity recognition and named entity normalization, and plays an essential role in the field of bioinformatics. However, the conventional dictionary-based methods did not sufficiently addressed the variation of the concepts in actual use in literature, resulting in the particularly degraded performances in recognition of multi-token concepts. Results In this paper, we propose a concept recognition method of multi-token biological entities using neural models combined with literature contexts. The key aspect of our method is utilizing the contextual information from the biological knowledge-bases for concept normalization, which is followed by named entity recognition procedure. The model showed improved performances over conventional methods, particularly for multi-token concepts with higher variations. Conclusions We expect that our model can be utilized for effective concept recognition and variety of natural language processing tasks on bioinformatics.
Combining empirical knowledge, in silico molecular docking and ADMET profiling to identify therapeutic phytochemicals from Brucea antidysentrica for acute myeloid leukemia
Acute myeloid leukemia (AML) is one of the deadly cancers. Chemotherapy is the first-line treatment and the only curative intervention is stem cell transplantation which are intolerable for aged and comorbid patients. Therefore, finding complementary treatment is still an active research area. For this, empirical knowledge driven search for therapeutic agents have been carried out by long and arduous wet lab processes. Nonetheless, currently there is an accumulated bioinformatics data about natural products that enabled the use of efficient and cost effective in silico methods to find drug candidates. In this work, therefore, we set out to computationally investigate the phytochemicals from Brucea antidysentrica to identify therapeutic phytochemicals for AML. We performed in silico molecular docking of compounds against AML receptors IDH2, MCL1, FLT3 and BCL2. Phytochemicals were docked to AML receptors at the same site where small molecule drugs were bound and their binding affinities were examined. In addition, random compounds from PubChem were docked with AML targets and their docking score was compared with that of phytochemicals using statistical analysis. Then, non-covalent interactions between phytochemicals and receptors were identified and visualized using discovery studio and Protein-Ligand Interaction Profiler web tool (PLIP). From the statistical analysis, most of the phytochemicals exhibited significantly lower (p-value ≤ 0.05) binding energies compared with random compounds. Using cutoff binding energy of less than or equal to one standard deviation from the mean of the phytochemicals’ binding energies for each receptor, 12 phytochemicals showed considerable binding affinity. Especially, hydnocarpin (-8.9 kcal/mol) and yadanzioside P (-9.4 kcal/mol) exhibited lower binding energy than approved drugs AMG176 (-8.6 kcal/mol) and gilteritinib (-9.1 kcal/mol) to receptors MCL1 and FLT3 respectively, indicating their potential to be lead molecules. In addition, most of the phytochemicals possessed acceptable drug-likeness and absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Based on the binding affinities as exhibited by the molecular docking studies supported by the statistical analysis, 12 phytochemicals from Brucea antidysentrica (1,11-dimethoxycanthin-6-one, 1-methoxycanthin-6-one, 2-methoxycanthin-6-one, beta-carboline-1-propionic acid, bruceanol A, bruceanol D, bruceanol F, bruceantarin, bruceantin, canthin-6-one, hydnocarpin, and yadanzioside P) can be considered as candidate compounds to prevent and manage AML. However, the phytochemicals should be further studied using in vivo & in vitro experiments on AML models. Therefore, this study concludes that combination of empirical knowledge, in silico molecular docking and ADMET profiling is useful to find natural product-based drug candidates. This technique can be applied to other natural products with known empirical efficacy.
Predicting Pharmacodynamic Drug-Drug Interactions through Signaling Propagation Interference on Protein-Protein Interaction Networks
As pharmacodynamic drug-drug interactions (PD DDIs) could lead to severe adverse effects in patients, it is important to identify potential PD DDIs in drug development. The signaling starting from drug targets is propagated through protein-protein interaction (PPI) networks. PD DDIs could occur by close interference on the same targets or within the same pathways as well as distant interference through cross-talking pathways. However, most of the previous approaches have considered only close interference by measuring distances between drug targets or comparing target neighbors. We have applied a random walk with restart algorithm to simulate signaling propagation from drug targets in order to capture the possibility of their distant interference. Cross validation with DrugBank and Kyoto Encyclopedia of Genes and Genomes DRUG shows that the proposed method outperforms the previous methods significantly. We also provide a web service with which PD DDIs for drug pairs can be analyzed at http://biosoft.kaist.ac.kr/targetrw.
Drug repurposing for Parkinson’s disease by biological pathway based edge-weighted network proximity analysis
Parkinson’s disease is the second most frequent neurodegenerative disease, and its severity is increasing with extended life expectancy. Most of current treatments provide symptomatic relief; however, disease progression is not inhibited. There are multiple trials for treatments that target the causes of the disease but they were flawed. The mechanisms underlying neurodegenerative diseases are intricate, and understanding the interplay among the biological elements involved is crucial. These relationships can be effectively analyzed through biological networks, and the application of network-based analyses in the context of neurodegenerative disease treatment has gained considerable attention. Moreover, considering the significance differences in interactions between biological elements within the network is important. Therefore, we introduce a novel biological pathway based edge-weighted network construction method for drug repurposing in Parkinson’s disease. The interaction found in multiple Parkinson’s disease-related pathways is more significant than other interactions, and this significance is reflected in the network edge weights. Using the edge-weighted network construction method, we found a significant difference in the efficacy between known and unknown Parkinson’s disease drugs. The method predicts drug-disease interactions more accurately than approaches that do not consider the significance differences among interactions, and the paths between the drug and disease within the network correspond to the drug’s mechanism of action. In summary, we propose a network-based drug repurposing method using the biological pathway based edge-weighted network. Using this methodology, researchers can find novel drug candidates for the parkinson’s disease and their mechanism of actions.
In silico activity and ADMET profiling of phytochemicals from Ethiopian indigenous aloes using pharmacophore models
In silico profiling is used in identification of active compounds and guide rational use of traditional medicines. Previous studies on Ethiopian indigenous aloes focused on documentation of phytochemical compositions and traditional uses. In this study, ADMET and drug-likeness properties of phytochemicals from Ethiopian indigenous aloes were evaluated, and pharmacophore-based profiling was done using Discovery Studio to predict therapeutic targets. The targets were examined using KEGG pathway, gene ontology and network analysis. Using random-walk with restart algorithm, network propagation was performed in CODA network to find diseases associated with the targets. As a result, 82 human targets were predicted and found to be involved in several molecular functions and biological processes. The targets also were linked to various cancers and diseases of immune system, metabolism, neurological system, musculoskeletal system, digestive system, hematologic, infectious, mouth and dental, and congenital disorder of metabolism. 207 KEGG pathways were enriched with the targets, and the main pathways were metabolism of steroid hormone biosynthesis, lipid and atherosclerosis, chemical carcinogenesis, and pathways in cancer. In conclusion, in silico target fishing and network analysis revealed therapeutic activities of the phytochemicals, demonstrating that Ethiopian indigenous aloes exhibit polypharmacology effects on numerous genes and signaling pathways linked to many diseases.
Combining empirical knowledge, in silico molecular docking and ADMET profiling to identify therapeutic phytochemicals from Brucea antidysentrica for acute myeloid leukemia
Acute myeloid leukemia (AML) is one of the deadly cancers. Chemotherapy is the first-line treatment and the only curative intervention is stem cell transplantation which are intolerable for aged and comorbid patients. Therefore, finding complementary treatment is still an active research area. For this, empirical knowledge driven search for therapeutic agents have been carried out by long and arduous wet lab processes. Nonetheless, currently there is an accumulated bioinformatics data about natural products that enabled the use of efficient and cost effective in silico methods to find drug candidates. In this work, therefore, we set out to computationally investigate the phytochemicals from Brucea antidysentrica to identify therapeutic phytochemicals for AML. We performed in silico molecular docking of compounds against AML receptors IDH2, MCL1, FLT3 and BCL2. Phytochemicals were docked to AML receptors at the same site where small molecule drugs were bound and their binding affinities were examined. In addition, random compounds from PubChem were docked with AML targets and their docking score was compared with that of phytochemicals using statistical analysis. Then, non-covalent interactions between phytochemicals and receptors were identified and visualized using discovery studio and Protein-Ligand Interaction Profiler web tool (PLIP). From the statistical analysis, most of the phytochemicals exhibited significantly lower (p-value ≤ 0.05) binding energies compared with random compounds. Using cutoff binding energy of less than or equal to one standard deviation from the mean of the phytochemicals' binding energies for each receptor, 12 phytochemicals showed considerable binding affinity. Especially, hydnocarpin (-8.9 kcal/mol) and yadanzioside P (-9.4 kcal/mol) exhibited lower binding energy than approved drugs AMG176 (-8.6 kcal/mol) and gilteritinib (-9.1 kcal/mol) to receptors MCL1 and FLT3 respectively, indicating their potential to be lead molecules. In addition, most of the phytochemicals possessed acceptable drug-likeness and absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Based on the binding affinities as exhibited by the molecular docking studies supported by the statistical analysis, 12 phytochemicals from Brucea antidysentrica (1,11-dimethoxycanthin-6-one, 1-methoxycanthin-6-one, 2-methoxycanthin-6-one, beta-carboline-1-propionic acid, bruceanol A, bruceanol D, bruceanol F, bruceantarin, bruceantin, canthin-6-one, hydnocarpin, and yadanzioside P) can be considered as candidate compounds to prevent and manage AML. However, the phytochemicals should be further studied using in vivo & in vitro experiments on AML models. Therefore, this study concludes that combination of empirical knowledge, in silico molecular docking and ADMET profiling is useful to find natural product-based drug candidates. This technique can be applied to other natural products with known empirical efficacy.
Compositional and functional differences of the mucosal microbiota along the intestine of healthy individuals
Gut mucosal microbes evolved closest to the host, developing specialized local communities. There is, however, insufficient knowledge of these communities as most studies have employed sequencing technologies to investigate faecal microbiota only. This work used shotgun metagenomics of mucosal biopsies to explore the microbial communities’ compositions of terminal ileum and large intestine in 5 healthy individuals. Functional annotations and genome-scale metabolic modelling of selected species were then employed to identify local functional enrichments. While faecal metagenomics provided a good approximation of the average gut mucosal microbiome composition, mucosal biopsies allowed detecting the subtle variations of local microbial communities. Given their significant enrichment in the mucosal microbiota, we highlight the roles of Bacteroides species and describe the antimicrobial resistance biogeography along the intestine. We also detail which species, at which locations, are involved with the tryptophan/indole pathway, whose malfunctioning has been linked to pathologies including inflammatory bowel disease. Our study thus provides invaluable resources for investigating mechanisms connecting gut microbiota and host pathophysiology.
Literature mining for context-specific molecular relations using multimodal representations (COMMODAR)
Biological contextual information helps understand various phenomena occurring in the biological systems consisting of complex molecular relations. The construction of context-specific relational resources vastly relies on laborious manual extraction from unstructured literature. In this paper, we propose COMMODAR, a machine learning-based literature mining framework for context-specific molecular relations using multimodal representations. The main idea of COMMODAR is the feature augmentation by the cooperation of multimodal representations for relation extraction. We leveraged biomedical domain knowledge as well as canonical linguistic information for more comprehensive representations of textual sources. The models based on multiple modalities outperformed those solely based on the linguistic modality. We applied COMMODAR to the 14 million PubMed abstracts and extracted 9214 context-specific molecular relations. All corpora, extracted data, evaluation results, and the implementation code are downloadable at https://github.com/jae-hyun-lee/commodar . Ccs concepts • Computing methodologies~Information extraction • Computing methodologies~Neural networks • Applied computing~Biological networks.
Inferring Pathway Activity toward Precise Disease Classification
The advent of microarray technology has made it possible to classify disease states based on gene expression profiles of patients. Typically, marker genes are selected by measuring the power of their expression profiles to discriminate among patients of different disease states. However, expression-based classification can be challenging in complex diseases due to factors such as cellular heterogeneity within a tissue sample and genetic heterogeneity across patients. A promising technique for coping with these challenges is to incorporate pathway information into the disease classification procedure in order to classify disease based on the activity of entire signaling pathways or protein complexes rather than on the expression levels of individual genes or proteins. We propose a new classification method based on pathway activities inferred for each patient. For each pathway, an activity level is summarized from the gene expression levels of its condition-responsive genes (CORGs), defined as the subset of genes in the pathway whose combined expression delivers optimal discriminative power for the disease phenotype. We show that classifiers using pathway activity achieve better performance than classifiers based on individual gene expression, for both simple and complex case-control studies including differentiation of perturbed from non-perturbed cells and subtyping of several different kinds of cancer. Moreover, the new method outperforms several previous approaches that use a static (i.e., non-conditional) definition of pathways. Within a pathway, the identified CORGs may facilitate the development of better diagnostic markers and the discovery of core alterations in human disease.