Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
475 result(s) for "Lee, Eun-Jae"
Sort by:
Beneficial Effects of Marine Algae-Derived Carbohydrates for Skin Health
Marine algae are considered to be an abundant sources of bioactive compounds with cosmeceutical potential. Recently, a great deal of interest has focused on the health-promoting effects of marine bioactive compounds. Carbohydrates are the major and abundant constituent of marine algae and have been utilized in cosmetic formulations, as moisturizing and thickening agents for example. In addition, marine carbohydrates have been suggested as promising bioactive biomaterials for their various properties beneficial to skin, including antioxidant, anti-melanogenic and skin anti-aging properties. Therefore, marine algae carbohydrates have potential skin health benefits for value-added cosmeceutical applications. The present review focuses on the various biological capacities and potential skin health benefits of bioactive marine carbohydrates.
Investigating Vulnerability, Adaptation, and Resilience: A Comprehensive Review within the Context of Climate Change
This review seeks to enhance the understanding of the critical concepts of vulnerability, adaptation, and resilience within the context of global environmental challenges, with a particular focus on climate change. Climate change is characterized by rising global temperatures and an increase in extreme weather events, making the comprehension and addressing of these concepts crucial for effective adaptation strategies. Despite widespread recognition of the interconnectedness of vulnerability, adaptation, and resilience, there remains a gap in a comprehensive understanding of how these concepts interrelate. Through synthesizing existing literature, this review provides a detailed examination of their definitions and the interrelationships among vulnerability, adaptation, resilience, and climate-related disasters. Additionally, it explores the impact of climate change on future disaster risk reduction efforts by analyzing the nexus between climate change adaptation and disaster risk reduction. Key findings highlight the necessity of incorporating social, institutional, economic, and environmental factors into adaptation planning and call for innovative approaches to boost adaptive capacity and resilience. This review not only furthers the discourse in research, policy, and practice in this vital area but also offers strategic insights for developing more resilient and adaptive societies amidst the challenges posed by climate change.
Impacts of salvage logging on biodiversity: A meta-analysis
1. Logging to \"salvage\" economic returns from forests affected by natural disturbances has become increasingly prevalent globally. Despite potential negative effects on biodiversity, salvage logging is often conducted, even in areas otherwise excluded from logging and reserved for nature conservation, inter alia because strategic priorities for post-disturbance management are widely lacking. 2. A review of the existing literature revealed that most studies investigating the effects of salvage logging on biodiversity have been conducted less than 5 years following natural disturbances, and focused on non-saproxylic organisms. 3. A meta-analysis across 24 species groups revealed that salvage logging significantly decreases numbers of species of eight taxonomic groups. Richness of dead wood dependent taxa (i.e. saproxylic organisms) decreased more strongly than richness of non-saproxylic taxa. In contrast, taxonomic groups typically associated with open habitats increased in the number of species after salvage logging. 4. By analysing 134 original species abundance matrices, we demonstrate that salvage logging significantly alters community composition in 7 of 17 species groups, particularly affecting saproxylic assemblages. 5. Synthesis and applications. Our results suggest that salvage logging is not consistent with the management objectives of protected areas. Substantial changes, such as the retention of dead wood in naturally disturbed forests, are needed to support biodiversity. Future research should investigate the amount and spatio-temporal distribution of retained dead wood needed to maintain all components of biodiversity.
Convolutional Neural Network-Based Digital Image Watermarking Adaptive to the Resolution of Image and Watermark
Digital watermarking has been widely studied as a method of protecting the intellectual property rights of digital images, which are high value-added contents. Recently, studies implementing these techniques with neural networks have been conducted. This paper also proposes a neural network to perform a robust, invisible blind watermarking for digital images. It is a convolutional neural network (CNN)-based scheme that consists of pre-processing networks for both host image and watermark, a watermark embedding network, an attack simulation for training, and a watermark extraction network to extract watermark whenever necessary. It has three peculiarities for the application aspect: The first is the host image resolution’s adaptability. This is to apply the proposed method to any resolution of the host image and is performed by composing the network without using any resolution-dependent layer or component. The second peculiarity is the adaptability of the watermark information. This is to provide usability of any user-defined watermark data. It is conducted by using random binary data as the watermark and is changed each iteration during training. The last peculiarity is the controllability of the trade-off relationship between watermark invisibility and robustness against attacks, which provides applicability for different applications requiring different invisibility and robustness. For this, a strength scaling factor for watermark information is applied. Besides, it has the following structural or in-training peculiarities. First, the proposed network is as simple as the most profound path consists of only 13 CNN layers, which is through the pre-processing network, embedding network, and extraction network. The second is that it maintains the host’s resolution by increasing the resolution of a watermark in the watermark pre-processing network, which is to increases the invisibility of the watermark. Also, the average pooling is used in the watermark pre-processing network to properly combine the binary value of the watermark data with the host image, and it also increases the invisibility of the watermark. Finally, as the loss function, the extractor uses mean absolute error (MAE), while the embedding network uses mean square error (MSE). Because the extracted watermark information consists of binary values, the MAE between the extracted watermark and the original one is more suitable for balanced training between the embedder and the extractor. The proposed network’s performance is confirmed through training and evaluation that the proposed method has high invisibility for the watermark (WM) and high robustness against various pixel-value change attacks and geometric attacks. Each of the three peculiarities of this scheme is shown to work well with the experimental results. Besides, it is exhibited that the proposed scheme shows good performance compared to the previous methods.
Upregulation of AQP4 Improves Blood–Brain Barrier Integrity and Perihematomal Edema Following Intracerebral Hemorrhage
In intracerebral hemorrhage (ICH), delayed secondary neural damages largely occur from perihematomal edema (PHE) resulting from the disruption of the blood–brain barrier (BBB). PHE is often considered the principal cause of morbidity and mortality in patients with ICH. Nevertheless, the main cellular mechanism as well as the specific BBB component involved in the formation of PHE after ICH remains elusive. Herein, we evaluated the role of AQP4, a water channel expressed on the astrocytes of the BBB, in the formation of PHE in ICH. The static and dynamic functions of the BBB were evaluated by analyzing the microstructure and leakage assay. Protein changes in the PHE lesion were analyzed and the control mechanism of AQP4 expression by reactive oxygen species was also investigated. Delayed PHE formation due to BBB disruption after ICH was confirmed by the decreased coverage of multiple BBB components and increased dynamic leakages. Microstructure assay showed that among the BBB components, AQP4 showed a markedly decreased expression in the PHE lesions. The decrease in AQP4 was due to microenvironmental ROS derived from the hemorrhage and was restored by treatment with ROS scavenger. AQP4-deficient mice had significantly larger PHE lesions and unfavorable survival outcomes compared with wild-type mice. Our data identify AQP4 as a specific BBB-modulating target for alleviating PHE in ICH. Further comprehensive studies are needed to form the preclinical basis for the use of AQP4 enhancers as BBB modulators for preventing delayed cerebral edema after ICH.
Early correction of synaptic long-term depression improves abnormal anxiety-like behavior in adult GluN2B-C456Y-mutant mice
Extensive evidence links Glutamate receptor, ionotropic, NMDA2B (GRIN2B), encoding the GluN2B/NR2B subunit of N-methyl-D-aspartate receptors (NMDARs), with various neurodevelopmental disorders, including autism spectrum disorders (ASDs), but the underlying mechanisms remain unclear. In addition, it remains unknown whether mutations in GluN2B, which starts to be expressed early in development, induces early pathophysiology that can be corrected by early treatments for long-lasting effects. We generated and characterized Grin2b-mutant mice that carry a heterozygous, ASD-risk C456Y mutation (Grin2b+/C456Y). In Grin2b+/C456Y mice, GluN2B protein levels were strongly reduced in association with decreased hippocampal NMDAR currents and NMDAR-dependent long-term depression (LTD) but unaltered long-term potentiation, indicative of mutation-induced protein degradation and LTD sensitivity. Behaviorally, Grin2b+/C456Y mice showed normal social interaction but exhibited abnormal anxiolytic-like behavior. Importantly, early, but not late, treatment of young Grin2b+/C456Y mice with the NMDAR agonist D-cycloserine rescued NMDAR currents and LTD in juvenile mice and improved anxiolytic-like behavior in adult mice. Therefore, GluN2B-C456Y haploinsufficiency decreases GluN2B protein levels, NMDAR-dependent LTD, and anxiety-like behavior, and early activation of NMDAR function has long-lasting effects on adult mouse behavior.
Functional connectivity interacts with visual perceptual learning for visual field recovery in chronic stroke
A reciprocal relationship between perceptual learning and functional brain changes towards perceptual learning effectiveness has been demonstrated previously; however, the underlying neural correlates remain unclear. Further, visual perceptual learning (VPL) is implicated in visual field defect (VFD) recovery following chronic stroke. We investigated resting-state functional connectivity (RSFC) in the visual cortices associated with mean total deviation (MTD) scores for VPL-induced VFD recovery in chronic stroke. Patients with VFD due to chronic ischemic stroke in the visual cortex received 24 VPL training sessions over 2 months, which is a dual discrimination task of orientation and letters. At baseline and two months later, the RSFC in the ipsilesional, interhemispheric, and contralesional visual cortices and MTD scores in the affected hemi-field were assessed. Interhemispheric visual RSFC at baseline showed the strongest correlation with MTD scores post-2-month VPL training. Notably, only the subgroup with high baseline interhemispheric visual RSFC showed significant VFD improvement following the VPL training. The interactions between the interhemispheric visual RSFC at baseline and VPL led to improvement in MTD scores and largely influenced the degree of VFD recovery. The interhemispheric visual RSFC at baseline could be a promising brain biomarker for the effectiveness of VPL-induced VFD recovery.
Enrichment of infection-associated bacteria in the low biomass brain bacteriota of Alzheimer’s disease patients
Alzheimer’s disease (AD) is a neurodegenerative disease accompanied by neuroimmune inflammation in the frontal cortex and hippocampus. Recently, the presence of bacteria in AD-affected brains has been documented, prompting speculation about their potential role in AD-associated neuroinflammation. However, the characterization of bacteriota in human brains affected by AD remains inconclusive. This study aimed to investigate potential associations between specific bacteria and AD pathology by examining brain tissues from AD-associated neurodegenerative regions (frontal cortex and hippocampus) and the non-AD-associated hypothalamus. Employing 16S rRNA gene sequencing, 30 postmortem brain tissue samples from four individuals with normal brain histology (N) and four AD patients were analyzed, along with three blank controls. A remarkably low biomass characterized the brain bacteriota, with their overall structures delineated primarily by brain regions rather than the presence of AD. While most analyzed parameters exhibited no significant distinction in the brain bacteriota between the N and AD groups, the unique detection of Cloacibacterium normanense in the AD-associated neurodegenerative regions stood out. Additionally, infection-associated bacteria, as opposed to periodontal pathogens, were notably enriched in AD brains. This study’s findings provide valuable insights into potential link between bacterial infection and neuroinflammation in AD.
Trans-synaptic zinc mobilization improves social interaction in two mouse models of autism through NMDAR activation
Genetic aspects of autism spectrum disorders (ASDs) have recently been extensively explored, but environmental influences that affect ASDs have received considerably less attention. Zinc (Zn) is a nutritional factor implicated in ASDs, but evidence for a strong association and linking mechanism is largely lacking. Here we report that trans-synaptic Zn mobilization rapidly rescues social interaction in two independent mouse models of ASD. In mice lacking Shank2, an excitatory postsynaptic scaffolding protein, postsynaptic Zn elevation induced by clioquinol (a Zn chelator and ionophore) improves social interaction. Postsynaptic Zn is mainly derived from presynaptic pools and activates NMDA receptors (NMDARs) through postsynaptic activation of the tyrosine kinase Src. Clioquinol also improves social interaction in mice haploinsufficient for the transcription factor Tbr1, which accompanies NMDAR activation in the amygdala. These results suggest that trans-synaptic Zn mobilization induced by clioquinol rescues social deficits in mouse models of ASD through postsynaptic Src and NMDAR activation. Zinc is a nutritional factor implicated in autism spectrum disorders (ASDs), but evidence for a strong association and linking mechanism is largely lacking. Here, the authors report that trans-synaptic zinc mobilization rapidly rescues social interaction in two independent mouse models of ASD.
Nationwide patterns of hydroxychloroquine dosing and monitoring of retinal toxicity in patients with systemic lupus erythematosus
This study identified trends in hydroxychloroquine (HCQ) prescription and retinopathy screening in patients with systemic lupus erythematosus (SLE) according to clinical practice guidelines to minimise the risk of HCQ retinopathy. We used data from patients diagnosed with SLE between 2004 and 2019 from the National Health Insurance Service in Korea. To assess trends of daily dose per actual body weight (ABW), we performed an interrupted time-series analysis and identified effects after revision of guidelines. Among 38,973 patients with SLE, 28,415 (72.9%) were prescribed HCQ from 2004 to 2019. The proportion of patients using HCQ among SLE patients was 63% in 2004 and increased to 76% in 2019. The median daily dose per ABW for HCQ users decreased from 5.88 mg/kg in 2004 to 3.98 mg/kg in 2019, and from 5.45 mg/kg in 2005 to 4.17 mg/kg in 2019 for HCQ new users. The annual implementation rate of screening tests among HCQ new users increased from 3.5% in 2006 to 22.5% in 2019. Study results indicated that HCQ dosing management was adequate based on the revised guidelines. Although the implementation rate of retinal screening has increased, it is necessary to enhance awareness of retinal screening in clinical settings.