Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
15
result(s) for
"Lee, Gunsup"
Sort by:
Broad-Spectrum Antiviral Activity of 3D8, a Nucleic Acid-Hydrolyzing Single-Chain Variable Fragment (scFv), Targeting SARS-CoV-2 and Multiple Coronaviruses In Vitro
2021
The virus behind the current pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the etiology of novel coronavirus disease (COVID-19) and poses a critical public health threat worldwide. Effective therapeutics and vaccines against multiple coronaviruses remain unavailable. Single-chain variable fragment (scFv), a recombinant antibody, exhibits broad-spectrum antiviral activity against DNA and RNA viruses owing to its nucleic acid-hydrolyzing property. The antiviral activity of 3D8 scFv against SARS-CoV-2 and other coronaviruses was evaluated in Vero E6 cell cultures. Viral growth was quantified with quantitative RT-qPCR and plaque assay. The nucleic acid-hydrolyzing activity of 3D8 was assessed through abzyme assays of in vitro viral transcripts and cell viability was determined by MTT assay. We found that 3D8 inhibited the replication of SARS-CoV-2, human coronavirus OC43 (HCoV-OC43), and porcine epidemic diarrhea virus (PEDV). Our results revealed the prophylactic and therapeutic effects of 3D8 scFv against SARS-CoV-2 in Vero E6 cells. Immunoblot and plaque assays showed the reduction of coronavirus nucleoproteins and infectious particles, respectively, in 3D8 scFv-treated cells. These data demonstrate the broad-spectrum antiviral activity of 3D8 against SARS-CoV-2 and other coronaviruses. Thus, it could be considered a potential antiviral countermeasure against SARS-CoV-2 and zoonotic coronaviruses.
Journal Article
A Nucleic-Acid Hydrolyzing Single Chain Antibody Confers Resistance to DNA Virus Infection in HeLa Cells and C57BL/6 Mice
2014
Viral protein neutralizing antibodies have been developed but they are limited only to the targeted virus and are often susceptible to antigenic drift. Here, we present an alternative strategy for creating virus-resistant cells and animals by ectopic expression of a nucleic acid hydrolyzing catalytic 3D8 single chain variable fragment (scFv), which has both DNase and RNase activities. HeLa cells (SCH07072) [corrected] expressing 3D8 scFv acquired significant resistance to DNA viruses. Virus challenging with Herpes simplex virus (HSV) in 3D8 scFv transgenic cells and fluorescence resonance energy transfer (FRET) assay based on direct DNA cleavage analysis revealed that the induced resistance in HeLa cells was acquired by the nucleic acid hydrolyzing catalytic activity of 3D8 scFv. In addition, pseudorabies virus (PRV) infection in WT C57BL/6 mice was lethal, whereas transgenic mice (STG90) that expressed high levels of 3D8 scFv mRNA in liver, muscle, and brain showed a 56% survival rate 5 days after PRV intramuscular infection. The antiviral effects against DNA viruses conferred by 3D8 scFv expression in HeLa cells as well as an in vivo mouse system can be attributed to the nuclease activity that inhibits viral genome DNA replication in the nucleus and/or viral mRNA translation in the cytoplasm. Our results demonstrate that the nucleic-acid hydrolyzing activity of 3D8 scFv confers viral resistance to DNA viruses in vitro in HeLa cells and in an in vivo mouse system.
Journal Article
The 3D8 single chain variable fragment protein suppresses Newcastle disease virus transmission in transgenic chickens
2020
Background
The 3D8 single chain variable fragment (scFv) is a mini-antibody sequence that exhibits independent nuclease activity against all types of nucleic acids. In this research, crossing a 3D8 scFv G1 transgenic rooster with wild-type hens produced 3D8 scFv G
2
transgenic chickens to evaluate suppression of viral transmission.
Result
The transgenic chickens were identified using genomic PCR and immunohistochemistry. To evaluate Newcastle disease virus (NDV) protection conferred by 3D8 scFv expression, transgenic, non-transgenic, and specific pathogen-free (SPF) chickens were challenged with virulent NDV by direct injection or aerosol exposure. The three groups of chickens showed no significant differences (
p
< 0.05) in mean death time after being directly challenged with NDV; however, in contrast to chickens in the non-transgenic and SPF groups, chickens in the transgenic group survived after aerosol exposure. Although the transgenic chickens did not survive after direct challenge, we found that the chickens expressing the 3D8 scFv survived aerosol exposure to NDV.
Conclusions
Our finding suggest that the 3D8 scFv could be a useful tool to prevent chickens from spreading NDV and control virus transmission.
Journal Article
High dose concentration administration of ascorbic acid inhibits tumor growth in BALB/C mice implanted with sarcoma 180 cancer cells via the restriction of angiogenesis
2009
To test the carcinostatic effects of ascorbic acid, we challenged the mice of seven experimental groups with 1.7 × 10
-4
mol high dose concentration ascorbic acid after intraperitoneal administrating them with sarcoma S-180 cells. The survival rate was increased by 20% in the group that received high dose concentration ascorbic acid, compared to the control. The highest survival rate was observed in the group in which 1.7 × 10
-4
mol ascorbic acid had been continuously injected before and after the induction of cancer cells, rather than just after the induction of cancer cells. The expression of three angiogenesis-related genes was inhibited by 0.3 times in bFGF, 7 times in VEGF and 4 times in MMP2 of the groups with higher survival rates. Biopsy Results, gene expression studies, and wound healing analysis
in vivo
and
in vitro
suggested that the carcinostatic effect induced by high dose concentration ascorbic acid occurred through inhibition of angiogenesis.
Journal Article
Preventive Activity against Influenza (H1N1) Virus by Intranasally Delivered RNA-Hydrolyzing Antibody in Respiratory Epithelial Cells of Mice
2015
The antiviral effect of a catalytic RNA-hydrolyzing antibody, 3D8 scFv, for intranasal administration against avian influenza virus (H1N1) was described. The recombinant 3D8 scFv protein prevented BALB/c mice against H1N1 influenza virus infection by degradation of the viral RNA genome through its intrinsic RNA-hydrolyzing activity. Intranasal administration of 3D8 scFv (50 μg/day) for five days prior to infection demonstrated an antiviral activity (70% survival) against H1N1 infection. The antiviral ability of 3D8 scFv to penetrate into epithelial cells from bronchial cavity via the respiratory mucosal layer was confirmed by immunohistochemistry, qRT-PCR, and histopathological examination. The antiviral activity of 3D8 scFv against H1N1 virus infection was not due to host immune cytokines or chemokines, but rather to direct antiviral RNA-hydrolyzing activity of 3D8 scFv against the viral RNA genome. Taken together, our results suggest that the RNase activity of 3D8 scFv, coupled with its ability to penetrate epithelial cells through the respiratory mucosal layer, directly prevents H1N1 virus infection in a mouse model system.
Journal Article
Soluble Cytoplasmic Expression and Purification of Immunotoxin HER2(scFv)-PE24B as a Maltose Binding Protein Fusion
by
Nguyen, Minh Quan
,
Jang, Yeon Jin
,
Park, Sangsu
in
ADP Ribose Transferases - genetics
,
Antibodies
,
Antineoplastic Agents, Immunological - pharmacology
2021
Human epidermal growth factor receptor 2 (HER-2) is overexpressed in many malignant tumors. The anti-HER2 antibody trastuzumab has been approved for treating HER2-positive early and metastatic breast cancers. Pseudomonas exotoxin A (PE), a bacterial toxin of Pseudomonas aeruginosa, consists of an A-domain with enzymatic activity and a B-domain with cell binding activity. Recombinant immunotoxins comprising the HER2(scFv) single-chain Fv from trastuzumab and the PE24B catalytic fragment of PE display promising cytotoxic effects, but immunotoxins are typically insoluble when expressed in the cytoplasm of Escherichia coli, and thus they require solubilization and refolding. Herein, a recombinant immunotoxin gene was fused with maltose binding protein (MBP) and overexpressed in a soluble form in E. coli. Removal of the MBP yielded stable HER2(scFv)-PE24B at 91% purity; 0.25 mg of pure HER2(scFv)-PE24B was obtained from a 500 mL flask culture. Purified HER2(scFv)-PE24B was tested against four breast cancer cell lines differing in their surface HER2 level. The immunotoxin showed stronger cytotoxicity than HER2(scFv) or PE24B alone. The IC50 values for HER2(scFv)-PE24B were 28.1 ± 2.5 pM (n = 9) and 19 ± 1.4 pM (n = 9) for high HER2-positive cell lines SKBR3 and BT-474, respectively, but its cytotoxicity was lower against MDA-MB-231 and MCF7. Thus, fusion with MBP can facilitate the soluble expression and purification of scFv immunotoxins.
Journal Article
Development of DNA chip for jellyfish verification from South Korea
by
Hwang, Seung Yong
,
Lee, Sukchan
,
Lee, Youn-Ho
in
Bar codes
,
Biodiversity
,
Biomedical Engineering and Bioengineering
2011
Global warming and environmental change have been responsible for an exponential increase in the number of jellyfish. The mass propagation of jellyfish has inflicted great damage to the economy worldwide. Therefore, in order to instantly determine the possible types of jellyfish, DNA barcode data analysis was conducted using molecular markers. DNA chip technology is an efficient method for species-level identification and, as such, will contribute powerfully to taxonomic and biodiversity research. In order to identify jellyfish species, the mitochondrial COI gene, which has been shown to be widely applicable in animal barcoding, was used; the selected species-specific probe was 23 bp and was printed onto silylated slides using a robotic microarrayer. Additionally, COI genes were amplified from the genomic DNA of jellyfish using the primers LCO1490 and HCO2198 targeted to COI. In this study, we amplified and analyzed species-specific COI sequences for six jellyfish species (A
equorea coerulescens, Aurelia aurita, Bolinopsis sp., Cyanea nozakii, Dactylometra quinquecirrha, Nemopilema nomurai
) collected at Jangmok Bay in Geoje. Herein, we describe each of the jellyfish species detected via microarray analysis. As a result, the COI barcode sequence technique was found to be suitable for the identification of jellyfish from South Korea.
Journal Article
The 3D8 single chain variable fragment protein suppresses Newcastle disease virus transmission in transgenic chickens
2020
The 3D8 single chain variable fragment (scFv) is a mini-antibody sequence that exhibits independent nuclease activity against all types of nucleic acids. In this research, crossing a 3D8 scFv G1 transgenic rooster with wild-type hens produced 3D8 scFv G.sub.2 transgenic chickens to evaluate suppression of viral transmission. The transgenic chickens were identified using genomic PCR and immunohistochemistry. To evaluate Newcastle disease virus (NDV) protection conferred by 3D8 scFv expression, transgenic, non-transgenic, and specific pathogen-free (SPF) chickens were challenged with virulent NDV by direct injection or aerosol exposure. The three groups of chickens showed no significant differences (p < 0.05) in mean death time after being directly challenged with NDV; however, in contrast to chickens in the non-transgenic and SPF groups, chickens in the transgenic group survived after aerosol exposure. Although the transgenic chickens did not survive after direct challenge, we found that the chickens expressing the 3D8 scFv survived aerosol exposure to NDV. Our finding suggest that the 3D8 scFv could be a useful tool to prevent chickens from spreading NDV and control virus transmission.
Journal Article
A Nucleic-Acid Hydrolyzing Single Chain Antibody Confers Resistance to DNA Virus Infection in HeLa Cells and C57BL/6 Mice
by
Byun, Sung-June
,
Lee, Sukchan
,
Yu, Jaelim
in
Colleges & universities
,
Deoxyribonucleic acid
,
Disease
2014
Viral protein neutralizing antibodies have been developed but they are limited only to the targeted virus and are often susceptible to antigenic drift. Here, we present an alternative strategy for creating virus-resistant cells and animals by ectopic expression of a nucleic acid hydrolyzing catalytic 3D8 single chain variable fragment (scFv), which has both DNase and RNase activities. HeLa cells (SCH7072) expressing 3D8 scFv acquired significant resistance to DNA viruses. Virus challenging with Herpes simplex virus (HSV) in 3D8 scFv transgenic cells and fluorescence resonance energy transfer (FRET) assay based on direct DNA cleavage analysis revealed that the induced resistance in HeLa cells was acquired by the nucleic acid hydrolyzing catalytic activity of 3D8 scFv. In addition, pseudorabies virus (PRV) infection in WT C57BL/6 mice was lethal, whereas transgenic mice (STG90) that expressed high levels of 3D8 scFv mRNA in liver, muscle, and brain showed a 56% survival rate 5 days after PRV intramuscular infection. The antiviral effects against DNA viruses conferred by 3D8 scFv expression in HeLa cells as well as an in vivo mouse system can be attributed to the nuclease activity that inhibits viral genome DNA replication in the nucleus and/or viral mRNA translation in the cytoplasm. Our results demonstrate that the nucleic-acid hydrolyzing activity of 3D8 scFv confers viral resistance to DNA viruses in vitro in HeLa cells and in an in vivo mouse system.
Journal Article
RNA virus accumulation is inhibited by ribonuclease activity of 3D8 scFv in transgenic Nicotiana tabacum
2013
Plant viruses continue to cause diseases on economically important crops. Therefore, numerous attempts to produce virus resistant plants have been reported by using the mechanisms such as host mediated protection and virus mediated protection. Here, a novel strategy of targeting viral RNA itself, rather than viral gene products, is presented to generate virus-resistant transgenic plants. A catalytic single chain variable antibody, 3D8 scFv, which has RNase activities, was functionally expressed in the cytosol of Nicotiana tabacum. We found that progenies of the transgenic tobacco plant acquired complete resistances against four ss-RNA tobamoviruses and one cucumovirus tested without viral accumulation and delayed onset of disease symptoms. The results showed that the resistance observed in 3D8 scFv transgenic plants was caused by the RNase activity of 3D8 scFv itself, not by RNA-mediated gene silencing mechanism. Taken together, we suggested that newly gained resistance of the 3D8 scFv transgenic plants to five ss-RNA viruses most likely resulted from the RNase activity of 3D8 scFv.
Journal Article