Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
13 result(s) for "Lee, Hwi-Cheul"
Sort by:
Robust Three-Dimensional (3D) Expansion of Bovine Intestinal Organoids: An In Vitro Model as a Potential Alternative to an In Vivo System
Intestinal organoids offer great promise for disease-modelling-based host–pathogen interactions and nutritional research for feed efficiency measurement in livestock and regenerative medicine for therapeutic purposes. However, very limited studies are available on the functional characterisation and three-dimensional (3D) expansion of adult stem cells in livestock species compared to other species. Intestinal crypts derived from intestinal organoids under a 3D culture system from the small intestine in adult bovine were successfully established and characterised for functionality testing, including the cellular potentials and genetic properties based on immunohistochemistry, immunocytochemistry, epithelial barrier permeability assay, QuantSeq 3′ mRNA-Seq. data and quantitative reverse transcription-polymerase chain reaction. Intestinal organoids were long-term cultivated over several passages of culture without loss of the recapitulating capacity of crypts, and they had the specific expression of several specific markers involved in intestinal stem cells, intestinal epithelium, and nutrient absorption. In addition, they showed the key functionality with regard to a high permeability for compounds of up to FITC-dextran 4 kDa, while FITC-dextran 40 kDa failed to enter the organoid lumen and revealed that the genetic properties of bovine intestinal organoids were highly similar to those of in vivo. Collectively, these results provide a reliable method for efficient isolation of intestinal crypts from the small intestine and robust 3D expansion of intestinal organoids in adult bovine and demonstrate the in vitro 3D organoids mimics the in vivo tissue topology and functionality. Finally, intestinal organoids are potential alternatives to in vivo systems and will be facilitated as the practical model to replace animal experiments for various purposes in the fields of animal biotechnology.
The Influence of Specific Pathogen-Free and Conventional Environments on the Hematological Parameters of Pigs Bred for Xenotransplantation
Blood analysis plays a pivotal role in assessing the health of laboratory animals, including pigs. This study investigated the hematological profiles of transgenic pigs of the MGH breed for xenotransplantation, focusing on the effect of housing conditions on blood parameters. A cohort of pigs was longitudinally monitored from 6 to 18 months of age in both conventional and specific pathogen-free (SPF) environments. Red blood cells (RBCs), hemoglobin (HGB), and white blood cells (WBCs) were analyzed using standardized hematology analyzers. The results revealed that RBC and HGB levels were consistently higher in SPF-housed pigs. Notably, WBC counts were significantly lower in SPF-housed pigs, suggesting that reduced pathogen exposure under SPF conditions effectively diminished immune system activation. These findings raise a novel question as to whether distinct hematological parameters of specific and/or designated PF pigs would be advantages for the success of clinical xenotransplantation trials.
Isolation and characterization of cultured chicken oviduct epithelial cells and in vitro validation of constructed ovalbumin promoter in these cells
Objective: Transgenic hens hold a great promise to produce various valuable proteins. Through virus transduction into stage X embryo, the transgene expression under the control of constructed chicken ovalbumin promoters has been successfully achieved. However, a validation system that can evaluate differently developed ovalbumin promoters in in vitro, remains to be developed. Methods: In the present study, chicken oviduct epithelial cells (cOECs) were isolated from oviduct tissue and shortly cultured with keratinocyte complete medium supplemented with chicken serum. The isolated cells were characterized with immunofluorescence, western blot, and flow cytometry using oviduct-specific marker. Chicken mutated ovalbumin promoter (Mut-4.4-kb-pOV) was validated in these cells using luciferase reporter analysis. Results: The isolated cOECs revealed that the oviduct-specific marker, ovalbumin protein, was clearly detected by immunofluorescence, western blot, and flow cytometry analysis revealed that approximately 79.40% of the cells contained this protein. Also, luciferase reporter analysis showed that the constructed Mut-4.4-kb-pOV exhibited 7.1-fold (p<0.001) higher activity in the cOECs. Conclusion: Collectively, these results demonstrate the efficient isolation and characterization of cOECs and validate the activity of the constructed ovalbumin promoter in the cultured cOECs. The in vitro validation of the recombinant promoter activity in cOECs can facilitate the production of efficient transgenic chickens for potential use as bioreactors.
The 3D8 single chain variable fragment protein suppresses Newcastle disease virus transmission in transgenic chickens
Background The 3D8 single chain variable fragment (scFv) is a mini-antibody sequence that exhibits independent nuclease activity against all types of nucleic acids. In this research, crossing a 3D8 scFv G1 transgenic rooster with wild-type hens produced 3D8 scFv G 2 transgenic chickens to evaluate suppression of viral transmission. Result The transgenic chickens were identified using genomic PCR and immunohistochemistry. To evaluate Newcastle disease virus (NDV) protection conferred by 3D8 scFv expression, transgenic, non-transgenic, and specific pathogen-free (SPF) chickens were challenged with virulent NDV by direct injection or aerosol exposure. The three groups of chickens showed no significant differences ( p  < 0.05) in mean death time after being directly challenged with NDV; however, in contrast to chickens in the non-transgenic and SPF groups, chickens in the transgenic group survived after aerosol exposure. Although the transgenic chickens did not survive after direct challenge, we found that the chickens expressing the 3D8 scFv survived aerosol exposure to NDV. Conclusions Our finding suggest that the 3D8 scFv could be a useful tool to prevent chickens from spreading NDV and control virus transmission.
Comparative studies of skeletal muscle proteome and transcriptome profilings between pig breeds
Two genetically different pig breeds, the Korean native pig (KNP) and the Western meat-producing Landrace, show breed-specific traits in stress responsiveness (stress hormone levels), growth performance (live weight), and meat quality (intramuscular fat content). We analyzed expression levels within the proteome and transcriptome of the longissimus muscles of both breeds using two-dimensional electrophoresis (2-DE) and microarray analysis. We constructed a porcine proteome database focused mainly on mitochondrial proteins. In total, 101 proteins were identified, of which approximately 60% were metabolic enzymes and mitochondrial proteins. We screened several proteins and genes related to stress and metabolism in skeletal muscles using comparative analysis. In particular, three stress-related genes (heat shock protein β-1, stress-70 protein, and heat shock 70 kDa protein) were more highly expressed in the Landrace than in the KNP breed. Six metabolism-related genes (peroxisome proliferative activated receptor α, short-chain acyl-CoA dehydrogenase, succinate dehydrogenase, NADH-ubiquinone oxidoreductase, glycerol-3-phosphate dehydrogenase, and sterol regulatory element binding protein-1c), all of which are involved in energy and lipid metabolism, were more highly expressed at the protein or mRNA level in the KNP breed. These data may reflect the breed dependence of traits such as stress responsiveness, growth performance, and meat quality.
Inclusion of Lactobacillus salivarius strain revealed a positive effect on improving growth performance, fecal microbiota and immunological responses in chicken
Probiotics are defined as live microorganisms that when administered in an appropriate amount, provide health benefits to the host. This study aimed to evaluate the effect of the oral administration of Lactobacillus salivarius (L. salivarius) on growth performance, immunological responses, fecal microbial flora and intestinal mucosal morphology in chickens. Chickens were fed with 109 colony-forming units (CFUs) of wild-type (WT) L. salivarius or phosphate-buffered saline (PBS) for 5 weeks. Chickens body weight was significantly increased by administration of L. salivarius groups compared than control group. The microbial taxonomy in the small intestine and cecum was identified via the chicken feces sample. A total of 286,331 bacterial species were obtained from the chicken fecal samples in overall experimental group. From these, 145,012 bacterial species were obtained from oral administration of L. salivarius treatment group, while 141,319 bacterial species were obtained from control group. Almost 98% of all 16S rRNA sequences from the chicken fecal sample of the two groups were classified into known phyla. Firmicutes, Cyanobacteria, Proteobacteria, Bacteroidetes and Actinobacteria were highly abundant in both groups. Compared with the control birds, the chickens orally administered L. salivarius showed no significant differences in villus length and crypt length. Serum concentrations of the cytokines IL-8, TNF-α, IFN-γ, and IL-4 were markedly reduced in the L. salivarius group. In summary, our findings reveal that L. salivarius can act as a potential probiotic to improve performance and overall gut health in of chickens.
Overexpression of Jazf1 induces cardiac malformation through the upregulation of pro-apoptotic genes in mice
The transcription factor Juxtaposed with another zinc finger gene 1 (JAZF1) is a zinc finger protein that binds to the nuclear orphan receptor TR4. Recent evidence indicates that TR4 receptor functions as both a positive and negative regulator of transcription, but the role of JAZF1 in transcriptional mechanisms has not been elucidated. Recently, the incidence rate of congenital heart malformations was reported to be significantly elevated in patients who had neurofibromatosis 1 (NF1) with chromosomal microdeletion syndrome. Furthermore, Joined to JAZF1 (SUZ12) is expressed at high levels in the hearts of adult patients with NF1 microdeletion syndrome. Therefore, we hypothesized that ectopic expression of JAZF1 may lead to cardiac malformations that deleteriously affect the survival of neonates and adults. We sought to elucidate the role of JAZF1 in cardiac development using a Jazf1-overexpressing (Jazf1-Tg) mouse model. In Jazf1-Tg mice, Jazf1 mRNA expression was significantly elevated in the heart. Jazf1-Tg mice also showed cardiac defects, such as high blood pressure, electrocardiogram abnormalities, apoptosis of cardiomyocytes, ventricular non-compaction, and mitochondrial defects. In addition, we found that the expression levels of pro-apoptotic genes were elevated in the hearts of Jazf1-Tg mice. These findings suggest that Jazf1 overexpression may induce heart failure symptoms through the upregulation of pro-apoptotic genes in cardiomyocytes.
effects of various antioxidants on the development of parthenogenetic porcine embryos
The major objective of this study was to improve the development rate of parthenogenetic porcine embryos. In this study, the anti-oxidative and anti-apoptotic effects of three antioxidants, β-mercaptoethanol (β-ME), α-tocopherol, and extracellular superoxide dismutase (EC-SOD), were examined on the development of parthenogenetic porcine embryos. The development rate of parthenogenetic porcine embryos to the blastocyst stage was 8.1% for control; 19.1%, 14.6%, and 5.0% for 1, 3, and 5 μM β-ME; 17.2% and 17.5% for 50 and 100 μM α-tocopherol and 12.0% and 4.0% for EC-SOD transgenic mouse embryonic fibroblast (Tg-MEF) and EC-SOD non-transgenic mouse embryonic fibroblast (NTg-MEF) conditioned medium at day 3, respectively. Here, β-ME, α-tocopherol, and EC-SOD Tg-MEF conditioned medium increased the development rate of parthenogenetic porcine embryos to the blastocyst stage (P < 0.05). The average number of total cells and apoptotic cells at the blastocyst was analyzed at the optimal conditions of the three antioxidants. The three antioxidants increased the average number of total cells at the blastocyst, and they decreased apoptotic cells at the blastocyst as compared to control without supplementation (P < 0.05). When the reactive oxygen species levels in two-cell embryos after 1 μM β-ME and 100 μM α-tocopherol treatment were examined, those were lower than control group (P < 0.05). In conclusion, it was found that the three antioxidants, β-mercaptoethanol, α-tocopherol, and EC-SOD Tg-MEF, conditioned medium can play a role as a strong stimulator in the development of parthenogenetic porcine embryos.
Isolation and characterization of cultured chicken oviduct epithelial cells and in vitro validation of constructed ovalbumin promoter in these cells
Objective: Transgenic hens hold a great promise to produce various valuable proteins. Through virus transduction into stage X embryo, the transgene expression under the control of constructed chicken ovalbumin promoters has been successfully achieved. However, a validation system that can evaluate differently developed ovalbumin promoters in in vitro, remains to be developed. Methods: In the present study, chicken oviduct epithelial cells (cOECs) were isolated from oviduct tissue and shortly cultured with keratinocyte complete medium supplemented with chicken serum. The isolated cells were characterized with immunofluorescence, western blot, and flow cytometry using oviduct-specific marker. Chicken mutated ovalbumin promoter (Mut-4.4-kb-pOV) was validated in these cells using luciferase reporter analysis. Results: The isolated cOECs revealed that the oviduct-specific marker, ovalbumin protein, was clearly detected by immunofluorescence, western blot, and flow cytometry analysis revealed that approximately 79.40% of the cells contained this protein. Also, luciferase reporter analysis showed that the constructed Mut-4.4-kb-pOV exhibited 7.1-fold (p<0.001) higher activity in the cOECs. Conclusion: Collectively, these results demonstrate the efficient isolation and characterization of cOECs and validate the activity of the constructed ovalbumin promoter in the cultured cOECs. The in vitro validation of the recombinant promoter activity in cOECs can facilitate the production of efficient transgenic chickens for potential use as bioreactors.
The 3D8 single chain variable fragment protein suppresses Newcastle disease virus transmission in transgenic chickens
The 3D8 single chain variable fragment (scFv) is a mini-antibody sequence that exhibits independent nuclease activity against all types of nucleic acids. In this research, crossing a 3D8 scFv G1 transgenic rooster with wild-type hens produced 3D8 scFv G.sub.2 transgenic chickens to evaluate suppression of viral transmission. The transgenic chickens were identified using genomic PCR and immunohistochemistry. To evaluate Newcastle disease virus (NDV) protection conferred by 3D8 scFv expression, transgenic, non-transgenic, and specific pathogen-free (SPF) chickens were challenged with virulent NDV by direct injection or aerosol exposure. The three groups of chickens showed no significant differences (p < 0.05) in mean death time after being directly challenged with NDV; however, in contrast to chickens in the non-transgenic and SPF groups, chickens in the transgenic group survived after aerosol exposure. Although the transgenic chickens did not survive after direct challenge, we found that the chickens expressing the 3D8 scFv survived aerosol exposure to NDV. Our finding suggest that the 3D8 scFv could be a useful tool to prevent chickens from spreading NDV and control virus transmission.