Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
35 result(s) for "Lee, Jinyeop"
Sort by:
Automated sepsis detection with vancomycin- and allantoin-polydopamine magnetic nanoparticles
Rapid and accurate identification of the bacteria responsible for sepsis is paramount for effective patient care. Molecular diagnostic methods, such as polymerase chain reaction (PCR), encounter challenges in sepsis due to inhibitory compounds in the blood, necessitating their removal for precise analysis. In this study we present an innovative approach that utilizes vancomycin (Van) and allantoin (Al)-conjugated polydopamine (PDA)-coated magnetic nanoparticles (MNPs) for the rapid and automated enrichment of bacteria and their DNA extraction from blood without inducing clumping and aggregation of blood. Al/Van-PDA-MNPs, facilitated by IMS, eliminate the need for preliminary sample treatments, providing a swift and efficient method for bacterial concentration and DNA extraction within an hour. Employing Al/Van-PDA-MNPs within an automated framework has markedly improved our ability to pre-concentrate various Gram-negative and Gram-positive bacteria directly from blood samples. This advancement has effectively reduced the detection threshold to 10 2 colony-forming unit/mL by both PCR and quantitative PCR. The method's expedited processing time, combined with its precision, positions it as a feasible diagnostic tool for diverse healthcare settings, ranging from small clinics to large hospitals. Furthermore, the innovative application of nanoparticles for DNA extraction holds promising potential for advancing sepsis diagnostics, enabling earlier interventions and improving patient outcomes.
3D-Printed Modular Microfluidic Device Enabling Preconcentrating Bacteria and Purifying Bacterial DNA in Blood for Improving the Sensitivity of Molecular Diagnostics
Molecular diagnostics for sepsis is still a challenge due to the presence of compounds that interfere with gene amplification and bacteria at concentrations lower than the limit of detection (LOD). Here, we report on the development of a 3D printed modular microfluidic device (3DpmμFD) that preconcentrates bacteria of interest in whole blood and purifies their genomic DNA (gDNA). It is composed of a W-shaped microchannel and a conical microchamber. Bacteria of interest are magnetically captured from blood in the device with antibody conjugated magnetic nanoparticles (Ab-MNPs) at 5 mL/min in the W-shaped microchannel, while purified gDNA of the preconcentrated bacteria is obtained with magnetic silica beads (MSBs) at 2 mL/min in the conical microchamber. The conical microchamber was designed to be connected to the microchannel after the capturing process using a 3D-printed rotary valve to minimize the exposure of the MSBs to interfering compounds in blood. The pretreatment process of spiked blood (2.5 mL) can be effectively completed within about 50 min. With the 3DpmμFD, the LOD for the target microorganism Escherichia coli O157:H7 measured by both polymerase chain reaction (PCR) with electrophoresis and quantitative PCR was 10 colony forming unit (CFU) per mL of whole blood. The results suggest that our method lowers the LOD of molecular diagnostics for pathogens in blood by providing bacterial gDNA at high purity and concentration.
Comparison evaluation of bacterial DNA extraction methods for improved molecular diagnostic accuracy of sepsis-causing pathogens in clinical whole blood samples
Sepsis, a leading cause of mortality, requires rapid and accurate pathogen identification to ensure effective treatment. Current diagnostic methods such as blood cultures are time-consuming, whereas molecular diagnostic techniques represent a promising alternative for faster pathogen detection. Therefore, the aim of this study was to evaluate different DNA extraction methods for the improved detection of infectious pathogens in the bloodstream. Specifically, we compared one column-based DNA extraction method (QIAamp DNA Blood Mini Kit) with two magnetic bead-based DNA extraction methods (K-SL DNA Extraction Kit and GraBon™ system). Real-time PCR was performed using specific primers to assess the efficiency of each method. The K-SL DNA Extraction Kit and GraBon™ system exhibited higher accuracy rates of 77.5% (22/40) and 76.5% (21/40), respectively, compared to the QIAamp DNA Blood Mini Kit, which had an accuracy rate 65.0% (12/40) for Escherichia coli detection, whereas the GraBon™ system demonstrated higher accuracy rate of 77.5% (22/40) than the other two methods, which had an accuracy rates of 67.5% (14/40) for Staphylococcus aureus detection. All methods displayed high specificity for negative samples (100%). These findings highlight the superior performance of magnetic bead-based methods, particularly when automated, for extracting bacterial DNA from whole blood samples. Such methods may enable the more rapid and accurate diagnosis of bloodstream infections, potentially improving patient outcomes.
Vancomycin-conjugated polydopamine-coated magnetic nanoparticles for molecular diagnostics of Gram-positive bacteria in whole blood
Background Sepsis is caused mainly by infection in the blood with a broad range of bacterial species. It can be diagnosed by molecular diagnostics once compounds in the blood that interfere with molecular diagnostics are removed. However, this removal relies on ultracentrifugation. Immunomagnetic separation (IMS), which typically uses antibody-conjugated silica-coated magnetic nanoparticles (Ab-SiO 2 -MNPs), has been widely applied to isolate specific pathogens in various types of samples, such as food and environmental samples. However, its direct use in blood samples containing bacteria is limited due to the aggregation of SiO 2 -MNPs in the blood and inability to isolate multiple species of bacteria causing sepsis. Results In this study, we report the synthesis of vancomycin-conjugated polydopamine-coated (van-PDA-MNPs) enabling preconcentration of multiple bacterial species from blood without aggregation. The presence of PDA and van on MNPs was verified using transmission electron microscopy, X-ray photoelectron spectroscopy, and energy disruptive spectroscopy. Unlike van-SiO 2 -MNPs, van-PDA-MNPs did not aggregate in the blood. Van-PDA-MNPs were able to preconcentrate several species of Gram-positive bacteria in the blood, lowering the limit of detection (LOD) to 10 colony forming units/mL by polymerase chain reaction (PCR) and quantitative PCR (qPCR). This is 10 times more sensitive than the LOD obtained by PCR and qPCR using van-SiO 2 -MNPs. Conclusion These results suggest that PDA-MNPs can avoid aggregation in blood and be conjugated with receptors, thereby improving the sensitivity of molecular diagnostics of bacteria in blood samples.
A 3D-Printed Millifluidic Platform Enabling Bacterial Preconcentration and DNA Purification for Molecular Detection of Pathogens in Blood
Molecular detection of pathogens in clinical samples often requires pretreatment techniques, including immunomagnetic separation and magnetic silica-bead-based DNA purification to obtain the purified DNA of pathogens. These two techniques usually rely on handling small tubes containing a few millilitres of the sample and manual operation, implying that an automated system encompassing both techniques is needed for larger quantities of the samples. Here, we report a three-dimensional (3D)-printed millifluidic platform that enables bacterial preconcentration and genomic DNA (gDNA) purification for improving the molecular detection of target pathogens in blood samples. The device consists of two millichannels and one chamber, which can be used to preconcentrate pathogens bound to antibody-conjugated magnetic nanoparticles (Ab-MNPs) and subsequently extract gDNA using magnetic silica beads (MSBs) in a sequential manner. The platform was able to preconcentrate very low concentrations (1–1000 colony forming units (CFU)) of Escherichia coli O157:H7 and extract their genomic DNA in 10 mL of buffer and 10% blood within 30 min. The performance of the platform was verified by detecting as low as 1 CFU of E. coli O157:H7 in 10% blood using either polymerase chain reaction (PCR) with post gel electrophoresis or quantitative PCR. The results suggest that the 3D-printed millifluidic platform is highly useful for lowering the limitations on molecular detection in blood by preconcentrating the target pathogen and isolating its DNA in a large volume of the sample.
Molecular detection of bacterial contamination in plasma using magnetic-based enrichment
Bacterial contamination of blood products is a major problem in transfusion medicine, in terms of both morbidity and mortality. Platelets (PLTs) are stored at room temperature (under constant agitation) for more than 5 days, and bacteria can thus grow significantly from a low level to high titers. However, conventional methods like blood culture and lateral flow assay have disadvantages such as long detection time, low sensitivity, and the need for a large volume of blood components. We used real-time polymerase chain reaction (PCR) assays with antibiotic-conjugated magnetic nanobeads (MNBs) to detect enriched Gram-positive and -negative bacteria. The MNBs were coated with polyethylene glycol (PEG) to prevent aggregation by blood components. Over 80% of all bacteria were captured by the MNBs, and the levels of detection were 10 1 colony forming unit [CFU]/mL and 10 2  CFU/mL for Gram-positive and -negative bacteria, respectively. The detection time is < 3 h using only small volumes of blood components. Thus, compared to conventional methods, real-time PCR using MNBs allows for rapid detection with high sensitivity using only a small volume of blood components.
Integrated Microfluidic Preconcentration and Nucleic Amplification System for Detection of Influenza A Virus H1N1 in Saliva
Influenza A viruses are often present in environmental and clinical samples at concentrations below the limit of detection (LOD) of molecular diagnostics. Here we report an integrated microfluidic preconcentration and nucleic amplification system (μFPNAS) which enables both preconcentration of influenza A virus H1N1 (H1N1) and amplification of its viral RNA, thereby lowering LOD for H1N1. H1N1 virus particles were first magnetically preconcentrated using magnetic nanoparticles conjugated with an antibody specific for the virus. Their isolated RNA was amplified to cDNA through thermocycling in a trapezoidal chamber of the μFPNAS. A detection limit as low as 100 TCID50 (50% tissue culture infective dose) in saliva can be obtained within 2 hours. These results suggest that the LOD of molecular diagnostics for virus can be lowered by systematically combining immunomagnetic separation and reverse transcriptase-polymerase chain reaction (RT-PCR) in one microfluidic device.
Signal enhancement in ATP bioluminescence to detect bacterial pathogens via heat treatment
An ATP bioluminescence assay is frequently in the food industry as a commercially-available bacterial monitoring method because it is convenient and can monitor viable cells in food. However, such an assay suffers from low sensitivity and thus has limitations in monitoring highly pathogenic bacteria. In this study, we describe a method that improves the sensitivity by increasing the amount of ATP that is released from bacterial cells by subjecting the samples to heat treatment. When treated for 10 min at a temperature of 25 to 95°C in phosphate buffered saline (PBS) containing Escherichia coli O157:H7 or Salmonella enteritidis or Bacillus cereus at various concentrations, the relative luminescence unit (RLU) increased several times. Due to signal enhancement, the detection limit (LOD) of the ATP bioluminescence assay improved by about an order of magnitude in milk-containing microorganisms. Our results indicate that the simple heating step on the food samples before measurement is useful to improve the sensitivity of the ATP bioluminescence assay for bacterial detection.
A micromechanics-based analytical solution for the effective thermal conductivity of composites with orthotropic matrices and interfacial thermal resistance
We obtained an analytical solution for the effective thermal conductivity of composites composed of orthotropic matrices and spherical inhomogeneities with interfacial thermal resistance using a micromechanics-based homogenization. We derived the closed form of a modified Eshelby tensor as a function of the interfacial thermal resistance. We then predicted the heat flux of a single inhomogeneity in the infinite media based on the modified Eshelby tensor, which was validated against the numerical results obtained from the finite element analysis. Based on the modified Eshelby tensor and the localization tensor accounting for the interfacial resistance, we derived an analytical expression for the effective thermal conductivity tensor for the composites by a mean-field approach called the Mori-Tanaka method. Our analytical prediction matched very well with the effective thermal conductivity obtained from finite element analysis with up to 10% inhomogeneity volume fraction.