Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,186
result(s) for
"Lee, Kate A."
Sort by:
Reef-Fidelity and Migration of Tiger Sharks, Galeocerdo cuvier, across the Coral Sea
2014
Knowledge of the habitat use and migration patterns of large sharks is important for assessing the effectiveness of large predator Marine Protected Areas (MPAs), vulnerability to fisheries and environmental influences, and management of shark-human interactions. Here we compare movement, reef-fidelity, and ocean migration for tiger sharks, Galeocerdo cuvier, across the Coral Sea, with an emphasis on New Caledonia. Thirty-three tiger sharks (1.54 to 3.9 m total length) were tagged with passive acoustic transmitters and their localised movements monitored on receiver arrays in New Caledonia, the Chesterfield and Lord Howe Islands in the Coral Sea, and the east coast of Queensland, Australia. Satellite tags were also used to determine habitat use and movements among habitats across the Coral Sea. Sub-adults and one male adult tiger shark displayed year-round residency in the Chesterfields with two females tagged in the Chesterfields and detected on the Great Barrier Reef, Australia, after 591 and 842 days respectively. In coastal barrier reefs, tiger sharks were transient at acoustic arrays and each individual demonstrated a unique pattern of occurrence. From 2009 to 2013, fourteen sharks with satellite and acoustic tags undertook wide-ranging movements up to 1114 km across the Coral Sea with eight detected back on acoustic arrays up to 405 days after being tagged. Tiger sharks dove 1136 m and utilised three-dimensional activity spaces averaged at 2360 km³. The Chesterfield Islands appear to be important habitat for sub-adults and adult male tiger sharks. Management strategies need to consider the wide-ranging movements of large (sub-adult and adult) male and female tiger sharks at the individual level, whereas fidelity to specific coastal reefs may be consistent across groups of individuals. Coastal barrier reef MPAs, however, only afford brief protection for large tiger sharks, therefore determining the importance of other oceanic Coral Sea reefs should be a priority for future research.
Journal Article
Movements, Home Range and Site Fidelity of Snapper (Chrysophrys auratus) within a Temperate Marine Protected Area
2015
Understanding the movement dynamics of marine fish provides valuable information that can assist with species management, particularly regarding protection within marine protected areas (MPAs). We performed an acoustic tagging study implemented within the Port Stephens-Great Lakes Marine Park on the mid-north coast of New South Wales, Australia, to assess the movement patterns, home range and diel activity of snapper (Chrysophrys auratus; Sparidae); a species of significant recreational and commercial fishing importance in Australia. The study focused on C. auratus movements around Cabbage Tree Island, which is predominantly a no-take sanctuary zone (no fishing), with an array of acoustic stations deployed around the island and adjacent reefs and islands. Thirty C. auratus were tagged with internal acoustic tags in November 2010 with their movements recorded until September 2014. Both adult and juvenile C. auratus were observed to display strong site fidelity to Cabbage Tree Island with a mean 12-month residency index of 0.83 (range = 0 low to 1 high). Only three fish were detected on acoustic receivers away from Cabbage Tree Island, with one fish moving a considerable distance of ~ 290 kms over a short time frame (46 days). The longest period of residency recorded at the island was for three fish occurring regularly at the site for a period of 1249 days. Chrysophrys auratus displayed strong diurnal behaviour and detection frequency was significantly higher during the day than at night; however, there was no significant difference in detection frequency between different hours. This study demonstrates that even small-scale protected areas can benefit C. auratus during multiple life-history stages as it maintains a small home range and displays strong site fidelity over a period of 3 years.
Journal Article
Capture Response and Long-Term Fate of White Sharks (Carcharodon carcharias) after Release from SMART Drumlines
by
Lee, Kate A.
,
Butcher, Paul A.
,
Gallen, Christopher R.
in
Acoustics
,
Analysis
,
Animal behavior
2023
Human-shark conflict has been managed through catch-and-kill policies in most parts of the world. More recently, there has been a greater demand for shark bite mitigation measures to improve protection for water users whilst minimizing harm to non-target and target species, particularly White Sharks (Carcharodon carcharias), given their status as a Threatened, Endangered, or Protected (TEP) species. A new non-lethal shark bite mitigation method, known as the Shark-Management-Alert-in-Real-Time (SMART) drumline, alerts responders when an animal takes the bait and thereby provides an opportunity for rapid response to the catch and potentially to relocate, tag, and release sharks. Thirty-six White Sharks were caught on SMART drumlines in New South Wales, Australia, and tagged with dorsal fin-mounted satellite-linked radio transmitters (SLRTs) and acoustic tags before release. Thirty-one sharks were located within 10 days, 22 of which provided high-quality locations (classes 1 to 3) suitable for analysis. Twenty-seven percent and 59% of these sharks were first detected within 10 and 50 h of release, respectively. For the first three days post-release, sharks moved and mostly remained offshore (>3.5 km from the coast), irrespective of shark sex and length. Thereafter, tagged sharks progressively moved inshore; however, 77% remained more than 1.9 km off the coast and an average of 5 km away from the tagging location, 10 days post-release. Sharks were acoustically detected for an average of 591 days post-release (ranging from 45 to 1075 days). Although five of the 36 sharks were not detected on acoustic receivers, SLRT detections for these five sharks ranged between 43 and 639 days post-release, indicating zero mortality associated with capture. These results highlight the suitability of SMART drumlines as a potential non-lethal shark bite mitigation tool for TEP species such as White Sharks, as they initially move away from the capture site, and thereby this bather protection tool diminishes the immediate risk of shark interactions at that site.
Journal Article
Marine predator movements create seascape connectivity in remote coral reef ecosystems
by
Lee, Kate A.
,
Ferreira, Luciana C.
,
Meekan, Mark
in
Acoustic tracking
,
Analysis
,
Animal Ecology
2025
Background
Movement of marine predators can connect different habitats and create links that are key for maintaining metapopulation dynamics, genetic diversity, energy flow and trophic links within and between systems. This key ecological process is known as ecological connectivity.
Methods
We used a combination of acoustic telemetry data, network analysis (graph theory), habitat modelling and machine learning methods to quantify movement patterns and habitat use of three coral reef predators (grey reef shark
Carcharhinus amblyrhynchos
, silvertip shark
Carcharhinus albimarginatus
and red bass
Lutjanus bohar
). We also assessed how movements and habitat preference influence connectivity in two remote reef systems (Rowley Shoals and Scott Reef) off Northwest Australia.
Results
Grey reef shark movements created more substantial connections within reef systems, greater than silvertip sharks and red bass, with occasional long-ranging movement linking distant atolls. Core use areas (nodes with high degree centrality) were represented by low complexity habitats in shallow areas near passages in the reef crest, but varied among species, time of the day and sex. Overall, female sharks had larger networks with greater movement extent than males indicating potential sex-specific patterns in movement and connectivity of sharks at both local (within an atoll) and regional (within reef system) spatial scales. Red bass movements resulted in local-scale connectivity between the lagoon and nearby forereef areas, whereas reef shark connectivity operated at broader scales with movement along the forereef creating stronger connections across distant areas within the reef systems.
Conclusions
The combination of animal tracking data, network analyses and machine learning allowed us to describe complex patterns of movement and habitat use within and between remote coral reef ecosystems and how they influence ecological connectivity over local and regional scales. Importantly, we suggest that the existing spatial protection across these remote coral reefs is effective in protecting the local-scale connectivity of mesopredators, yet broad-scale protection is required to effectively encompass the seascape connectivity of large predators which is crucial for the long-term health and stability of coral reef ecosystems.
Journal Article
Long-term patterns of abundance, residency and movements of bull sharks (Carcharhinus leucas) in Sydney Harbour, Australia
by
Smoothey, Amy F.
,
Lee, Kate A.
,
Peddemors, Victor M.
in
631/158/2039
,
631/158/672
,
631/158/856
2019
Bull sharks (Carcharhinus leucas) are known to frequent nearshore environments, particularly estuaries, resulting in interactions with humans. Knowledge of the behaviour of large individuals in temperate, estuarine environments is limited. This acoustic telemetry study reports on residency and movement patterns of 40 sub-adult and adult bull sharks in Sydney Harbour, a large temperate estuary, over seven years. Bull sharks exhibited clear seasonal patterns in their occurrence during the austral summer and autumn, with abundance peaking in January and February. This pattern was consistent between sexes and across all sizes. Bull sharks displayed weak diel differences in their spatial distribution, with individuals using areas further from the Harbour entrance more frequently during the day and at low tides. A diel pattern in depth use was apparent, with sharks utilising deeper water during daytime and moving shallower at night. Bull sharks had high individual inter-annual variability in their spatial distribution, however, when data were aggregated among all individuals and years, two locations of increased use were identified. Water temperature was the key predictor for seasonal movements and return behaviour to this estuary, suggesting that increasing water temperatures as a result of climate change may lead to higher shark abundance and possibly longer periods of residency in Sydney Harbour. Understanding the drivers for bull shark abundance and distribution will hopefully facilitate better education and shark smart behaviour by estuarine water-users, especially during summer and autumn months.
Journal Article
Assessing the Use of Area- and Time-Averaging Based on Known De-correlation Scales to Provide Satellite Derived Sea Surface Temperatures in Coastal Areas
2018
Satellite derived sea surface temperatures (SSTs) are often used as a proxy for in situ water temperatures, as they are readily available over large spatial and temporal scales. However, contamination of satellite images can prohibit their use in coastal areas. We compared in situ temperatures to SST foundation (~10 m depth) at 31 sites inshore of the East Australian Current (EAC), the dynamic western boundary current of the south Pacific gyre, using an area averaging approach to overcome coastal contamination. Varying across- and along-shelf distances were used to area average SST measurements and de-correlation time scales were used to gap fill data. As the EAC is typically anisotropic (dominant along-shore flow) the choice of across-shelf distances influenced the correlation with in situ temperatures more than along-shelf distances. However, the “optimal” distances for both measurements were within known de-correlation length scales. Incorporating both SST area and time averaging (based on de-correlation time scales) produced data for an average of 96% of days that in situ loggers were deployed, compared to 27% (52%) without (with) area averaging. Temperature differences between the in situ data and SSTs varied depending on time of year, with higher differences in the austral summer when daily in situ temperatures can range by up to 4.20°C. The differences between the in situ and SST measurements were, however, significant with or without area averaging (t-test: p-values < 0.05). Nevertheless, when using the area averaging approaches SSTs were only an average of ~1.05°C different from in situ temperatures and less than in situ temperature fluctuations. Linear mixed models revealed that latitude, distance to the coast and nearest estuary did not influence the difference between the in situ and satellite data as much as the water depth. This study shows that using de-correlation length and time scales to inform how to process satellite data can overcome contamination and missing data thereby greatly increasing the coverage and utility of SST data, particularly in coastal areas.
Journal Article
Movements, Home Range and Site Fidelity of Snapper (Chrysophrys auratus) within a Temperate Marine Protected Area: e0142454
2015
Understanding the movement dynamics of marine fish provides valuable information that can assist with species management, particularly regarding protection within marine protected areas (MPAs). We performed an acoustic tagging study implemented within the Port Stephens-Great Lakes Marine Park on the mid-north coast of New South Wales, Australia, to assess the movement patterns, home range and diel activity of snapper (Chrysophrys auratus; Sparidae); a species of significant recreational and commercial fishing importance in Australia. The study focused on C. auratus movements around Cabbage Tree Island, which is predominantly a no-take sanctuary zone (no fishing), with an array of acoustic stations deployed around the island and adjacent reefs and islands. Thirty C. auratus were tagged with internal acoustic tags in November 2010 with their movements recorded until September 2014. Both adult and juvenile C. auratus were observed to display strong site fidelity to Cabbage Tree Island with a mean 12-month residency index of 0.83 (range = 0 low to 1 high). Only three fish were detected on acoustic receivers away from Cabbage Tree Island, with one fish moving a considerable distance of ~ 290 kms over a short time frame (46 days). The longest period of residency recorded at the island was for three fish occurring regularly at the site for a period of 1249 days. Chrysophrys auratus displayed strong diurnal behaviour and detection frequency was significantly higher during the day than at night; however, there was no significant difference in detection frequency between different hours. This study demonstrates that even small-scale protected areas can benefit C. auratus during multiple life-history stages as it maintains a small home range and displays strong site fidelity over a period of 3 years.
Journal Article
Reef-Fidelity and Migration of Tiger Sharks, Galeocerdo cuvier, across the Coral Sea: e83249
2014
Knowledge of the habitat use and migration patterns of large sharks is important for assessing the effectiveness of large predator Marine Protected Areas (MPAs), vulnerability to fisheries and environmental influences, and management of shark-human interactions. Here we compare movement, reef-fidelity, and ocean migration for tiger sharks, Galeocerdo cuvier, across the Coral Sea, with an emphasis on New Caledonia. Thirty-three tiger sharks (1.54 to 3.9 m total length) were tagged with passive acoustic transmitters and their localised movements monitored on receiver arrays in New Caledonia, the Chesterfield and Lord Howe Islands in the Coral Sea, and the east coast of Queensland, Australia. Satellite tags were also used to determine habitat use and movements among habitats across the Coral Sea. Sub-adults and one male adult tiger shark displayed year-round residency in the Chesterfields with two females tagged in the Chesterfields and detected on the Great Barrier Reef, Australia, after 591 and 842 days respectively. In coastal barrier reefs, tiger sharks were transient at acoustic arrays and each individual demonstrated a unique pattern of occurrence. From 2009 to 2013, fourteen sharks with satellite and acoustic tags undertook wide-ranging movements up to 1114 km across the Coral Sea with eight detected back on acoustic arrays up to 405 days after being tagged. Tiger sharks dove 1136 m and utilised three-dimensional activity spaces averaged at 2360 km3. The Chesterfield Islands appear to be important habitat for sub-adults and adult male tiger sharks. Management strategies need to consider the wide-ranging movements of large (sub-adult and adult) male and female tiger sharks at the individual level, whereas fidelity to specific coastal reefs may be consistent across groups of individuals. Coastal barrier reef MPAs, however, only afford brief protection for large tiger sharks, therefore determining the importance of other oceanic Coral Sea reefs should be a priority for future research.
Journal Article
Tobacco smoking and somatic mutations in human bronchial epithelium
2020
Tobacco smoking causes lung cancer
1
–
3
, a process that is driven by more than 60 carcinogens in cigarette smoke that directly damage and mutate DNA
4
,
5
. The profound effects of tobacco on the genome of lung cancer cells are well-documented
6
–
10
, but equivalent data for normal bronchial cells are lacking. Here we sequenced whole genomes of 632 colonies derived from single bronchial epithelial cells across 16 subjects. Tobacco smoking was the major influence on mutational burden, typically adding from 1,000 to 10,000 mutations per cell; massively increasing the variance both within and between subjects; and generating several distinct mutational signatures of substitutions and of insertions and deletions. A population of cells in individuals with a history of smoking had mutational burdens that were equivalent to those expected for people who had never smoked: these cells had less damage from tobacco-specific mutational processes, were fourfold more frequent in ex-smokers than current smokers and had considerably longer telomeres than their more-mutated counterparts. Driver mutations increased in frequency with age, affecting 4–14% of cells in middle-aged subjects who had never smoked. In current smokers, at least 25% of cells carried driver mutations and 0–6% of cells had two or even three drivers. Thus, tobacco smoking increases mutational burden, cell-to-cell heterogeneity and driver mutations, but quitting promotes replenishment of the bronchial epithelium from mitotically quiescent cells that have avoided tobacco mutagenesis.
Whole-genome sequencing of normal bronchial epithelium from 16 individuals shows that tobacco smoking increases genomic heterogeneity, mutational burden and driver mutations, whereas stopping smoking promotes replenishment of the epithelium with near-normal cells.
Journal Article
Framework for the treatment and reporting of missing data in observational studies: The Treatment And Reporting of Missing data in Observational Studies framework
2021
Missing data are ubiquitous in medical research. Although there is increasing guidance on how to handle missing data, practice is changing slowly and misapprehensions abound, particularly in observational research. Importantly, the lack of transparency around methodological decisions is threatening the validity and reproducibility of modern research. We present a practical framework for handling and reporting the analysis of incomplete data in observational studies, which we illustrate using a case study from the Avon Longitudinal Study of Parents and Children. The framework consists of three steps: 1) Develop an analysis plan specifying the analysis model and how missing data are going to be addressed. An important consideration is whether a complete records’ analysis is likely to be valid, whether multiple imputation or an alternative approach is likely to offer benefits and whether a sensitivity analysis regarding the missingness mechanism is required; 2) Examine the data, checking the methods outlined in the analysis plan are appropriate, and conduct the preplanned analysis; and 3) Report the results, including a description of the missing data, details on how the missing data were addressed, and the results from all analyses, interpreted in light of the missing data and the clinical relevance. This framework seeks to support researchers in thinking systematically about missing data and transparently reporting the potential effect on the study results, therefore increasing the confidence in and reproducibility of research findings.
•Missing data are ubiquitous in medical research.•Guidance is available, but missing data are still often not handled appropriately.•We present a framework for handling and reporting analyses of incomplete data.•This framework encourages researchers to think systematically about missing data.•Adoption of this framework will increase the reproducibility of research findings.•This article provides a much needed framework for handling and reporting the analysis of incomplete data in observational studies.•The framework puts a strong emphasis on preplanning the statistical analysis and encourages transparency when reporting the results of a study.•Adoption of this framework will increase the confidence in and reproducibility of research findings.
Journal Article