Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
270 result(s) for "Lee, Keon Jae"
Sort by:
Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film
Controlling the properties of piezoelectric thin films is a key aspect for designing highly efficient flexible electromechanical devices. In this stud)~ the crystallographic phenomena of PbZr1-xTixO3 (PZT) thin films caused by distinguished interfacial effects are deeply investigated by overlooking views, including not only an experimental demonstration but also ab initio modeling. The polymorphic phase balance and crystallinity, as well as the crystal orientation of PZT thin films at the morphotropic phase boundary (MPB), can be stably modulated using interfacial crystal structures. Here, interactions with MgO stabilize the PZT crystallographic system well and induce the texturing influences, while the PZT film remains quasi-stable on a conventional A1203 wafer. On the basis of this fundamental understanding, a high-output flexible energy harvester is developed using the controlled-PZT system, which shows significantly higher performance than the unmodified PZT generator. The voltage, current, and power densities are improved by 556%, 503%, and 822%, respectively, in comparison with the previous flexional single-crystalline piezoelectric device. Finally, the improved flexible generator is applied to harvest tiny vibrational energy from a real traffic system, and it is used to operate a commercial electronic unit. These results clearly indicate that atomic-scale designs can produce significant impacts on macroscopic applications.
Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse
Neuromorphic computing targets the hardware embodiment of neural network, and device implementation of individual neuron and synapse has attracted considerable attention. The emulation of synaptic plasticity has shown promising results after the advent of memristors. However, neuronal intrinsic plasticity, which involves in learning process through interactions with synaptic plasticity, has been rarely demonstrated. Synaptic and intrinsic plasticity occur concomitantly in learning process, suggesting the need of the simultaneous implementation. Here, we report a neurosynaptic device that mimics synaptic and intrinsic plasticity concomitantly in a single cell. Threshold switch and phase change memory are merged in threshold switch-phase change memory device. Neuronal intrinsic plasticity is demonstrated based on bottom threshold switch layer, which resembles the modulation of firing frequency in biological neuron. Synaptic plasticity is also introduced through the nonvolatile switching of top phase change layer. Intrinsic and synaptic plasticity are simultaneously emulated in a single cell to establish the positive feedback between them. A positive feedback learning loop which mimics the retraining process in biological system is implemented in threshold switch-phase change memory array for accelerated training. Synaptic plasticity and neuronal intrinsic plasticity are both involved in the learning process of hardware artificial neural network. Here, Lee et al. integrate a threshold switch and a phase change memory in a single device, which emulates biological synaptic and intrinsic plasticity simultaneously.
Modulation of surface physics and chemistry in triboelectric energy harvesting technologies
Mechanical energy harvesting technology converting mechanical energy wasted in our surroundings to electrical energy has been regarded as one of the critical technologies for self-powered sensor network and Internet of Things (IoT). Although triboelectric energy harvesters based on contact electrification have attracted considerable attention due to their various advantages compared to other technologies, a further improvement of the output performance is still required for practical applications in next-generation IoT devices. In recent years, numerous studies have been carried out to enhance the output power of triboelectric energy harvesters. The previous research approaches for enhancing the triboelectric charges can be classified into three categories: i) materials type, ii) device structure, and iii) surface modification. In this review article, we focus on various mechanisms and methods through the surface modification beyond the limitations of structural parameters and materials, such as surficial texturing/patterning, functionalization, dielectric engineering, surface charge doping and 2D material processing. This perspective study is a cornerstone for establishing next-generation energy applications consisting of triboelectric energy harvesters from portable devices to power industries.
Universal selective transfer printing via micro-vacuum force
Transfer printing of inorganic thin-film semiconductors has attracted considerable attention to realize high-performance soft electronics on unusual substrates. However, conventional transfer technologies including elastomeric transfer printing, laser-assisted transfer, and electrostatic transfer still have challenging issues such as stamp reusability, additional adhesives, and device damage. Here, a micro-vacuum assisted selective transfer is reported to assemble micro-sized inorganic semiconductors onto unconventional substrates. 20 μm-sized micro-hole arrays are formed via laser-induced etching technology on a glass substrate. The vacuum controllable module, consisting of a laser-drilled glass and hard-polydimethylsiloxane micro-channels, enables selective modulation of micro-vacuum suction force on microchip arrays. Ultrahigh adhesion switchability of 3.364 × 10 6 , accomplished by pressure control during the micro-vacuum transfer procedure, facilitates the pick-up and release of thin-film semiconductors without additional adhesives and chip damage. Heterogeneous integration of III-V materials and silicon is demonstrated by assembling microchips with diverse shapes and sizes from different mother wafers on the same plane. Multiple selective transfers are implemented by independent pressure control of two separate vacuum channels with a high transfer yield of 98.06%. Finally, flexible micro light-emitting diodes and transistors with uniform electrical/optical properties are fabricated via micro-vacuum assisted selective transfer. Transfer printing of inorganic semiconductors is essential for high-performance flexible electronics. Here, Park et al. report the micro-vacuum assisted selective transfer to integrate inorganic thin-film semiconductors on unusual substrates.
Flash-Induced High-Throughput Porous Graphene via Synergistic Photo-Effects for Electromagnetic Interference Shielding
HighlightsFlash-induced porous graphene (FPG) was synthesized via a broad-spectrum flash lamp that induced synergistic photo-effects between ultraviolet and visible-near-infrared wavelengths, resulting in large-area synthesis in just a few milliseconds.A hollow pillar graphene with low sheet resistance of 18 Ω sq−1 was produced, exhibiting low density (0.0354 g cm−3) and outstanding absolute electromagnetic interference shielding effectiveness of 1.12 × 105 dB cm2 g−1.A lightweight, flexible, and high-throughput FPG is applied for electromagnetic interference shielding of a drone radar system and the human body.Porous 2D materials with high conductivity and large surface area have been proposed for potential electromagnetic interference (EMI) shielding materials in future mobility and wearable applications to prevent signal noise, transmission inaccuracy, system malfunction, and health hazards. Here, we report on the synthesis of lightweight and flexible flash-induced porous graphene (FPG) with excellent EMI shielding performance. The broad spectrum of pulsed flashlight induces photo-chemical and photo-thermal reactions in polyimide films, forming 5 × 10 cm2-size porous graphene with a hollow pillar structure in a few milliseconds. The resulting material demonstrated low density (0.0354 g cm−3) and outstanding absolute EMI shielding effectiveness of 1.12 × 105 dB cm2 g−1. The FPG was characterized via thorough material analyses, and its mechanical durability and flexibility were confirmed by a bending cycle test. Finally, the FPG was utilized in drone and wearable applications, showing effective EMI shielding performance for internal/external EMI in a drone radar system and reducing the specific absorption rate in the human body.
Laser-induced phase separation of silicon carbide
Understanding the phase separation mechanism of solid-state binary compounds induced by laser–material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (∼2.5 nm) and polycrystalline silicon (∼5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system. Laser beam-induced processing is industrially relevant but often challenging to study in terms of underlying phase transformations. Here authors characterize formation of thin, phase-separated carbon and silicon layers on a silicon carbide substrate by laser-induced melting and solidification.
Heterogeneous Three-Dimensional Electronics by Use of Printed Semiconductor Nanomaterials
We developed a simple approach to combine broad classes of dissimilar materials into heterogeneously integrated electronic systems with two- or three-dimensional layouts. The process begins with the synthesis of different semiconductor nanomaterials, such as single-walled carbon nanotubes and single-crystal micro- and nanoscale wires and ribbons of gallium nitride, silicon, and gallium arsenide on separate substrates. Repeated application of an additive, transfer printing process that uses soft stamps with these substrates as donors, followed by device and interconnect formation, yields high-performance heterogeneously integrated electronics that incorporate any combination of semiconductor nanomaterials on rigid or flexible device substrates. This versatile methodology can produce a wide range of unusual electronic systems that would be impossible to achieve with other techniques.
Transfer printing by kinetic control of adhesion to an elastomeric stamp
An increasing number of technologies require large-scale integration of disparate classes of separately fabricated objects into spatially organized, functional systems 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 . Here we introduce an approach for heterogeneous integration based on kinetically controlled switching between adhesion and release of solid objects to and from an elastomeric stamp. We describe the physics of soft adhesion that govern this process and demonstrate the method by printing objects with a wide range of sizes and shapes, made of single-crystal silicon and GaN, mica, highly ordered pyrolytic graphite, silica and pollen, onto a variety of substrates without specially designed surface chemistries or separate adhesive layers. Printed p–n junctions and photodiodes fixed directly on highly curved surfaces illustrate some unique device-level capabilities of this approach.
Light–Material Interactions Using Laser and Flash Sources for Energy Conversion and Storage Applications
HighlightsThis review paper provides a comprehensive analysis of light–material interaction (LMI) parameters, offering insights into their significance in material processing.It examines a wide array of photothermal and photochemical processes, showcasing their versatility in creating advanced materials for energy conversion and storage applications.The review presents a multidisciplinary approach to advancing LMI technologies and highlights their potential contribution to the commercialization of future energy conversion and storage systems.This review provides a comprehensive overview of the progress in light–material interactions (LMIs), focusing on lasers and flash lights for energy conversion and storage applications. We discuss intricate LMI parameters such as light sources, interaction time, and fluence to elucidate their importance in material processing. In addition, this study covers various light-induced photothermal and photochemical processes ranging from melting, crystallization, and ablation to doping and synthesis, which are essential for developing energy materials and devices. Finally, we present extensive energy conversion and storage applications demonstrated by LMI technologies, including energy harvesters, sensors, capacitors, and batteries. Despite the several challenges associated with LMIs, such as complex mechanisms, and high-degrees of freedom, we believe that substantial contributions and potential for the commercialization of future energy systems can be achieved by advancing optical technologies through comprehensive academic research and multidisciplinary collaborations.