Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5
result(s) for
"Lee, Suhyeong"
Sort by:
Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production
2020
Despite the growing demand for hydrogen peroxide it is almost exclusively manufactured by the energy-intensive anthraquinone process. Alternatively, H
2
O
2
can be produced electrochemically via the two-electron oxygen reduction reaction, although the performance of the state-of-the-art electrocatalysts is insufficient to meet the demands for industrialization. Interestingly, guided by first-principles calculations, we found that the catalytic properties of the Co–N
4
moiety can be tailored by fine-tuning its surrounding atomic configuration to resemble the structure-dependent catalytic properties of metalloenzymes. Using this principle, we designed and synthesized a single-atom electrocatalyst that comprises an optimized Co–N
4
moiety incorporated in nitrogen-doped graphene for H
2
O
2
production and exhibits a kinetic current density of 2.8 mA cm
−2
(at 0.65 V versus the reversible hydrogen electrode) and a mass activity of 155 A g
−1
(at 0.65 V versus the reversible hydrogen electrode) with negligible activity loss over 110 hours.
Producing H
2
O
2
electrochemically currently use electrocatalysts that are insufficient to meet the demands for industrialization. A single-atom electrocatalyst with an optimized Co–N4 moiety incorporated in nitrogen-doped graphene is shown to exhibit enhanced performance for H
2
O
2
production.
Journal Article
Impact of a Variable Blockage Ratio on the Detonation Transition in a Pre-Detonator
by
Han, Sangkyu
,
Park, Sungwoo
,
Lee, Suhyeong
in
blockage ratio (BR)
,
Combustion
,
Compressive strength
2025
The deflagration-to-detonation transition (DDT) is a critical process for achieving reliable ignition in detonation-based propulsion systems, such as Rotating Detonation Engines (RDEs). This study experimentally investigates the effect of spatial variations in blockage ratio (BR) on flame acceleration and detonation onset within a modular pre-detonator. Three DDT device configurations (converging, constant, and diverging) were designed to have an identical average BR of 0.5 and were tested over equivalence ratios ranging from 0.64 to 1.6. High-speed imaging, pressure transducers, and schlieren visualization were employed to characterize flame propagation velocity, pressure evolution, and exit wave structures. The converging configuration consistently promoted earlier detonation onset and higher success rates, especially under fuel-rich conditions (ϕ = 1.6), while the diverging configuration failed to initiate detonation in all cases. Enhanced flame compression in the converging layout led to strong coupling between the shock and reaction fronts, facilitating robust detonation formation. These findings indicate that the spatial distribution of BR, rather than average BR alone, plays a decisive role in DDT performance. This work offers validated design insights for optimizing pre-detonator in RDE applications.
Journal Article
Structural Characterization and Comparison of Monovalent Cation-Exchanged Zeolite-W
by
Chae, Sungmin
,
Lee, Sihyun
,
Lee, Yongmoon
in
Aluminum
,
Axes (reference lines)
,
Cation exchanging
2020
We report comparative structural changes of potassium-contained zeolite-W (K-MER, structural analogue of natural zeolite merlinoite) and monovalent extra-framework cation (EFC)-exchanged M-MERs (M = Li+, Na+, Ag+, and Rb+). High-resolution synchrotron X-ray powder diffraction study precisely determines that crystal symmetry of MERs is tetragonal (I4/mmm). Rietveld refinement results reveal that frameworks of all MERs are geometrically composed of disordered Al/Si tetrahedra, bridged by linkage oxygen atoms. We observe a structural relationship between a group of Li-, Na-, and Ag-MER and the group of K- and Rb-MER by EFC radius and position of M(1) site inside double 8-membered ring unit (d8r). In the former group, a-axes decrease reciprocally, c-axes gradually extend by EFC size, and M(1) cations are located at the middle of the d8r. In the latter group, a- and c-axes lengths become longer and shorter, respectively, than axes of the former group, and these axial changes come from middle-to-edge migration of M(1) cations inside the d8r channel. Unit cell volumes of the Na-, Ag-, and K-MER are ca. 2005 Å3, and the volume expansion in the MER series is limited by EFC size, the number of water molecules, and the distribution of extra-framework species inside the MER channel. EFC sites of M(1) and M(2) show disordered and ordered distribution in the former group, and all EFC sites change to disordered distribution after migration of the M(1) site in the latter group. The amount of water molecules and porosities are inversely proportional to EFC size due to the limitation of volume expansion of MERs. The channel opening area of a pau composite building unit and the amount of water molecules are universally related as a function of cation size because water molecules are mainly distributed inside a pau channel.
Journal Article
Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H 2 O 2 production
2020
Despite the growing demand for hydrogen peroxide it is almost exclusively manufactured by the energy-intensive anthraquinone process. Alternatively, H
O
can be produced electrochemically via the two-electron oxygen reduction reaction, although the performance of the state-of-the-art electrocatalysts is insufficient to meet the demands for industrialization. Interestingly, guided by first-principles calculations, we found that the catalytic properties of the Co-N
moiety can be tailored by fine-tuning its surrounding atomic configuration to resemble the structure-dependent catalytic properties of metalloenzymes. Using this principle, we designed and synthesized a single-atom electrocatalyst that comprises an optimized Co-N
moiety incorporated in nitrogen-doped graphene for H
O
production and exhibits a kinetic current density of 2.8 mA cm
(at 0.65 V versus the reversible hydrogen electrode) and a mass activity of 155 A g
(at 0.65 V versus the reversible hydrogen electrode) with negligible activity loss over 110 hours.
Journal Article
Vector Field-Based Robust Quadrotor Landing on a Moving Ground Platform
2025
The autonomous landing of unmanned aerial vehicles (UAVs) on moving platforms has potential applications across various domains. However, robust landing remains challenging because the detection reliability of UAVs decreases when the UAV is close to a moving platform. To address this issue, this paper proposes a novel landing strategy that ensures a high detection rate. First, a robust detectable region was established by considering the sensing range and maneuverability limitations of the UAV. Second, a vector field was designed to guide the UAV to the moving platform while remaining in a robust detectable region. Next, safe and accurate landings were achieved by considering the current velocity and vector field. The landing strategy was validated through outdoor flight experiments. A quadrotor equipped with a gimbal-mounted camera was used, and a fractal marker was attached to the moving platform for detection and tracking. When the moving platform moved at a speed of 2–4.3 m/s, the UAV successfully landed on the platform with a distance error of 0.4 m. Because of the robust detectable region and vector field, the detection was conducted with a high success rate (94.9%).
Journal Article