Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
117 result(s) for "Leendertz, Fabian H."
Sort by:
High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa
As the only volant mammals, bats are captivating for their high taxonomic diversity, for their vital roles in ecosystems—particularly as pollinators and insectivores—and, more recently, for their important roles in the maintenance and transmission of zoonotic viral diseases. Genome sequences have identified evidence for a striking expansion of and positive selection in gene families associated with immunity. Bats have also been known to be hosts of malaria parasites for over a century, and as hosts, they possess perhaps the most phylogenetically diverse set of hemosporidian genera and species. To provide a molecular framework for the study of these parasites, we surveyed bats in three remote areas of the Upper Guinean forest ecosystem. We detected four distinct genera of hemosporidian parasites: Plasmodium, Polychromophilus, Nycteria, and Hepatocystis. Intriguingly, the two species of Plasmodium in bats fall within the clade of rodent malaria parasites, indicative of multiple host switches across mammalian orders. We show that Nycteria species form a very distinct phylogenetic group and that Hepatocystis parasites display an unusually high diversity and prevalence in epauletted fruit bats. The diversity and high prevalence of novel lineages of chiropteran hemosporidians underscore the exceptional position of bats among all other mammalian hosts of hemosporidian parasites and support hypotheses of pathogen tolerance consistent with the exceptional immunology of bats.
Highly diverse and antimicrobial susceptible Escherichia coli display a naïve bacterial population in fruit bats from the Republic of Congo
Bats are suspected to be a reservoir of several bacterial and viral pathogens relevant to animal and human health, but studies on Escherichia coli in these animals are sparse. We investigated the presence of E. coli in tissue samples (liver, lung and intestines) collected from 50 fruit bats of five different species (Eidolon helvum, Epomops franqueti, Hypsignathus monstrosus, Myonycteris torquata, Rousettus aegyptiacus) of two different areas in the Republic of Congo between 2009 and 2010. To assess E. coli pathotypes and phylogenetic relationships, we determined the presence of 59 virulence associated genes and multilocus sequence types (STs). Isolates were further tested for their susceptibility to several antimicrobial substances by agar disk diffusion test and for the presence of an Extended-Spectrum Beta-Lactamase phenotype. E. coli was detected in 60% of the bats analysed. The diversity of E. coli strains was very high, with 37 different STs within 40 isolates. Occasionally, we detected sequence types (e.g. ST69, ST127, and ST131) and pathotypes (e.g. ExPEC, EPEC and atypical EPEC), which are known pathogens in human and/or animal infections. Although the majority of strains were assigned to phylogenetic group B2 (46.2%), which is linked with the ExPEC pathovar, occurrence of virulence-associated genes in these strains were unexpectedly low. Due to this, and as only few of the E. coli isolates showed intermediate resistance to certain antimicrobial substances, we assume a rather naïve E. coli population, lacking contact to humans or domestic animals. Future studies featuring in depth comparative whole genome sequence analyses will provide insights into the microevolution of this interesting strain collection.
Origin of the HIV-1 group O epidemic in western lowland gorillas
Significance Understanding emerging disease origins is important to gauge future human infection risks. This is particularly true for the various forms of the AIDS virus, HIV-1, which were transmitted to humans on four independent occasions. Previous studies identified chimpanzees in southern Cameroon as the source of the pandemic M group, as well as the geographically more restricted N group. Here, we show that the remaining two groups also emerged in southern Cameroon but had their origins in western lowland gorillas. Although group P has only been detected in two individuals, group O has spread extensively throughout west central Africa. Thus, both chimpanzees and gorillas harbor viruses that are capable of crossing the species barrier to humans and causing major disease outbreaks. HIV-1, the cause of AIDS, is composed of four phylogenetic lineages, groups M, N, O, and P, each of which resulted from an independent cross-species transmission event of simian immunodeficiency viruses (SIVs) infecting African apes. Although groups M and N have been traced to geographically distinct chimpanzee communities in southern Cameroon, the reservoirs of groups O and P remain unknown. Here, we screened fecal samples from western lowland ( n = 2,611), eastern lowland ( n = 103), and mountain ( n = 218) gorillas for gorilla SIV (SIVgor) antibodies and nucleic acids. Despite testing wild troops throughout southern Cameroon ( n = 14), northern Gabon ( n = 16), the Democratic Republic of Congo ( n = 2), and Uganda ( n = 1), SIVgor was identified at only four sites in southern Cameroon, with prevalences ranging from 0.8–22%. Amplification of partial and full-length SIVgor sequences revealed extensive genetic diversity, but all SIVgor strains were derived from a single lineage within the chimpanzee SIV (SIVcpz) radiation. Two fully sequenced gorilla viruses from southwestern Cameroon were very closely related to, and likely represent the source population of, HIV-1 group P. Most of the genome of a third SIVgor strain, from central Cameroon, was very closely related to HIV-1 group O, again pointing to gorillas as the immediate source. Functional analyses identified the cytidine deaminase APOBEC3G as a barrier for chimpanzee-to-gorilla, but not gorilla-to-human, virus transmission. These data indicate that HIV-1 group O, which spreads epidemically in west central Africa and is estimated to have infected around 100,000 people, originated by cross-species transmission from western lowland gorillas.
Capsules, Toxins and AtxA as Virulence Factors of Emerging Bacillus cereus Biovar anthracis
Emerging B. cereus strains that cause anthrax-like disease have been isolated in Cameroon (CA strain) and Côte d'Ivoire (CI strain). These strains are unusual, because their genomic characterisation shows that they belong to the B. cereus species, although they harbour two plasmids, pBCXO1 and pBCXO2, that are highly similar to the pXO1 and pXO2 plasmids of B. anthracis that encode the toxins and the polyglutamate capsule respectively. The virulence factors implicated in the pathogenicity of these B. cereus bv anthracis strains remain to be characterised. We tested their virulence by cutaneous and intranasal delivery in mice and guinea pigs; they were as virulent as wild-type B. anthracis. Unlike as described for pXO2-cured B. anthracis, the CA strain cured of the pBCXO2 plasmid was still highly virulent, showing the existence of other virulence factors. Indeed, these strains concomitantly expressed a hyaluronic acid (HA) capsule and the B. anthracis polyglutamate (PDGA) capsule. The HA capsule was encoded by the hasACB operon on pBCXO1, and its expression was regulated by the global transcription regulator AtxA, which controls anthrax toxins and PDGA capsule in B. anthracis. Thus, the HA and PDGA capsules and toxins were co-regulated by AtxA. We explored the respective effect of the virulence factors on colonisation and dissemination of CA within its host by constructing bioluminescent mutants. Expression of the HA capsule by itself led to local multiplication and, during intranasal infection, to local dissemination to the adjacent brain tissue. Co-expression of either toxins or PDGA capsule with HA capsule enabled systemic dissemination, thus providing a clear evolutionary advantage. Protection against infection by B. cereus bv anthracis required the same vaccination formulation as that used against B. anthracis. Thus, these strains, at the frontier between B. anthracis and B. cereus, provide insight into how the monomorphic B. anthracis may have emerged.
Zoonotic origin of the human malaria parasite Plasmodium malariae from African apes
The human parasite Plasmodium malariae has relatives infecting African apes ( Plasmodium rodhaini ) and New World monkeys ( Plasmodium brasilianum ), but its origins remain unknown. Using a novel approach to characterise P. malariae -related sequences in wild and captive African apes, we found that this group comprises three distinct lineages, one of which represents a previously unknown, highly divergent species infecting chimpanzees, bonobos and gorillas across central Africa. A second ape-derived lineage is much more closely related to the third, human-infective lineage P. malariae , but exhibits little evidence of genetic exchange with it, and so likely represents a separate species. Moreover, the levels and nature of genetic polymorphisms in P. malariae indicate that it resulted from the zoonotic transmission of an African ape parasite, reminiscent of the origin of P. falciparum . In contrast, P. brasilianum falls within the radiation of human P. malariae , and thus reflects a recent anthroponosis. Plasmodium malariae is a cause of malaria in humans and related species have been identified in non-human primates. Here, the authors use genomic analyses to establish that human P. malariae arose from a host switch of an ape parasite whilst a species infecting New World monkeys can be traced to a reverse zoonosis.
Bacillus cereus Biovar Anthracis Causing Anthrax in Sub-Saharan Africa—Chromosomal Monophyly and Broad Geographic Distribution
Through full genome analyses of four atypical Bacillus cereus isolates, designated B. cereus biovar anthracis, we describe a distinct clade within the B. cereus group that presents with anthrax-like disease, carrying virulence plasmids similar to those of classic Bacillus anthracis. We have isolated members of this clade from different mammals (wild chimpanzees, gorillas, an elephant and goats) in West and Central Africa (Côte d'Ivoire, Cameroon, Central African Republic and Democratic Republic of Congo). The isolates shared several phenotypic features of both B. anthracis and B. cereus, but differed amongst each other in motility and their resistance or sensitivity to penicillin. They all possessed the same mutation in the regulator gene plcR, different from the one found in B. anthracis, and in addition, carry genes which enable them to produce a second capsule composed of hyaluronic acid. Our findings show the existence of a discrete clade of the B. cereus group capable of causing anthrax-like disease, found in areas of high biodiversity, which are possibly also the origin of the worldwide distributed B. anthracis. Establishing the impact of these pathogenic bacteria on threatened wildlife species will require systematic investigation. Furthermore, the consumption of wildlife found dead by the local population and presence in a domestic animal reveal potential sources of exposure to humans.
Role of Wildlife in Emergence of Ebola Virus in Kaigbono (Likati), Democratic Republic of the Congo, 2017
After the 2017 Ebola virus (EBOV) outbreak in Likati, a district in northern Democratic Republic of the Congo, we sampled small mammals from the location where the primary case-patient presumably acquired the infection. None tested positive for EBOV RNA or antibodies against EBOV, highlighting the ongoing challenge in detecting animal reservoirs for EBOV.
Genetic diversity of enteric viruses responsible of gastroenteritis in urban and rural Burkina Faso
Viral gastrointestinal infections remain a major public health concern in developing countries. In Burkina Faso, there are very limited updated data on the circulating viruses and their genetic diversity. This study investigates the detection rates and characteristics of rotavirus A (RVA), norovirus (NoV), sapovirus (SaV) and human astrovirus (HAstV) in patients of all ages with acute gastrointestinal infection in urban and rural areas. From 2018 to 2021, stool samples from 1,295 patients with acute gastroenteritis were collected and screened for RVA, NoV, SaV and HAstV. Genotyping and phylogenetic analyses were performed on a subset of samples. At least one virus was detected in 34.1% of samples. NoV and SaV were predominant with detection rates of respectively 10.5 and 8.8%. We identified rare genotypes of NoV GII, RVA and HAstV, recombinant HAstV strains and a potential zoonotic RVA transmission event. We give an up-to-date epidemiological picture of enteric viruses in Burkina Faso, showing a decrease in prevalence but a high diversity of circulating strains. However, viral gastroenteritis remains a public health burden, particularly in pediatric settings. Our data advocate for the implementation of routine viral surveillance and updated management algorithms for diarrheal disease.
The Spread of Fecally Transmitted Parasites in Socially-Structured Populations
Mammals are infected by a wide array of gastrointestinal parasites, including parasites that also infect humans and domesticated animals. Many of these parasites are acquired through contact with infectious stages present in soil, feces or vegetation, suggesting that ranging behavior will have a major impact on their spread. We developed an individual-based spatial simulation model to investigate how range use intensity, home range overlap, and defecation rate impact the spread of fecally transmitted parasites in a population composed of social groups (i.e., a socially structured population). We also investigated the effects of epidemiological parameters involving host and parasite mortality rates, transmissibility, disease-related mortality, and group size. The model was spatially explicit and involved the spillover of a gastrointestinal parasite from a reservoir population along the edge of a simulated reserve, which was designed to mimic the introduction pathogens into protected areas. Animals ranged randomly within a \"core\" area, with biased movement toward the range center when outside the core. We systematically varied model parameters using a Latin hypercube sampling design. Analyses of simulation output revealed a strong positive association between range use intensity and the prevalence of infection. Moreover, the effects of range use intensity were similar in magnitude to effects of group size, mortality rates, and the per-contact probability of transmission. Defecation rate covaried positively with gastrointestinal parasite prevalence. Greater home range overlap had no positive effects on prevalence, with a smaller core resulting in less range overlap yet more intensive use of the home range and higher prevalence. Collectively, our results reveal that parasites with fecal-oral transmission spread effectively in socially structured populations. Future application should focus on parameterizing the model with empirically derived ranging behavior for different species or populations and data on transmission characteristics of different infectious organisms.
Burden and epidemiology of Campylobacter species in acute enteritis cases in Burkina Faso
Background Campylobacter spp. is a significant etiological agent of bacterial gastroenteritis globally. In Burkina Faso (BFA), the actual impact of this pathogen on gastroenteritis is considerably underestimated, primarily due to inadequate surveillance systems. Objectives This study aimed to investigate the proportion of Campylobacter species responsible for acute gastroenteritis among patients of all ages in urban and rural areas of BFA, using molecular biology techniques. Study design & methods Between 2018 and 2021, faecal specimens were obtained from 1,295 individuals presenting with acute gastroenteritis. These samples underwent screening for the Campylobacter coli/jejuni/lari complex utilizing real-time polymerase chain reaction (PCR) assays. Subsequently, positive samples were subjected to species-level differentiation through the application of species-specific primers. Results Campylobacter spp. was detected in 25.0% (324/1,295) of the samples analysed. The majority of positive samples (95%, 308/324) were obtained from children under 5 years of age. Species identification was performed on a subset of 114 isolates, revealing 51 Campylobacter jejuni , 10 Campylobacter coli , and 53 Campylobacter isolates that remained unspeciated. Conclusions This study reveals a significant prevalence of Campylobacter species among patients with acute gastroenteritis, with a particularly high incidence observed in children under 5 years of age. Based on these findings, the implementation of routine Campylobacter surveillance in public health laboratories is strongly recommended to better monitor and address this health concern.