Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"Leesman, Glen"
Sort by:
A Novel Proteomics-Based Clinical Diagnostics Technology Identifies Heterogeneity in Activated Signaling Pathways in Gastric Cancers
by
Sohn, Tae Sung
,
Kang, Won Ki
,
Do, In-Gu
in
1-Phosphatidylinositol 3-kinase
,
Activation
,
Adult
2013
The aim of this study was to utilize the proteomics-based Collaborative Enzyme Enhanced Reactive (CEER) immunoassay to investigate protein tyrosine phosphorylations as diagnostic markers in gastric cancers (GCs).
Protein lysates from fresh-frozen 434 advanced stage GCs were analyzed for phosphorylation of HER1, HER2, p95HER2, HER3, cMET, IGF1R and PI3K. The pathway activation patterns were segregated based on the tumor HER2 status. Hierarchical clustering was utilized to determine pathway coactivations in GCs. Prognostic value of pathway activation patterns was determined by correlating disease-free survival times of the various GC subgroups using Kaplan-Meier survival analysis. CEER was also used to determine the presence of tyrosine phosphorylated signaling cascades in circulating tumor cells (CTCs) and ascites tumor cells (ATCs).
Utilizing a novel diagnostics immunoassay, CEER, we demonstrate the presence of p95HER2 and concomitantly activated signaling pathways in GC tumor tissues, CTCs and ATCs isolated from GC patients for the first time. p95HER2 is expressed in ~77% of HER2(+) GCs. Approximately 54% of GCs have an activated HER1, HER2, HER3, cMET or IGF1R and demonstrate a poorer prognosis than those where these receptor tyrosine kinases (RTKs) are not activated. Hierarchical clustering of RTKs reveals co-clustering of phosphorylated HER1:cMET, HER2:HER3 and IGF1R-PI3K. Coactivation of HER1 with cMET renders GCs with a shorter disease-free survival as compared to only cMET activated GCs.
Our study highlights the utility of a novel companion diagnostics technology, CEER that has strong implications for drug development and therapeutic monitoring. CEER is used to provide an increased understanding of activated signaling pathways in advanced GCs that can significantly improve their clinical management through accurate patient selection for targeted therapeutics.
Journal Article
Highly sensitive proximity mediated immunoassay reveals HER2 status conversion in the circulating tumor cells of metastatic breast cancer patients
by
Lee, Tani
,
Leesman, Glen
,
Kirkland, Richard
in
Biomedical and Life Sciences
,
Breast cancer
,
Cancer cells
2011
Background
The clinical benefits associated with targeted oncology agents are generally limited to subsets of patients. Even with favorable biomarker profiles, many patients do not respond or acquire resistance. Existing technologies are ineffective for treatment monitoring as they provide only static and limited information and require substantial amounts of tissue. Therefore, there is an urgent need to develop methods that can profile potential therapeutic targets with limited clinical specimens during the course of treatment.
Methods
We have developed a novel proteomics-based assay,
C
ollaborative
E
nzyme
E
nhanced
R
eactive-immunoassay (CEER) that can be used for analyzing clinical samples. CEER utilizes the formation of unique immuno-complex between capture-antibodies and two additional detector-Abs on a microarray surface. One of the detector-Abs is conjugated to glucose oxidase (GO), and the other is conjugated to Horse Radish Peroxidase (HRP). Target detection requires the presence of both detector-Abs because the enzyme channeling event between GO and HRP will not occur unless both Abs are in close proximity.
Results
CEER was able to detect single-cell level expression and phosphorylation of human epidermal growth factor receptor 2 (HER2) and human epidermal growth factor receptor 1 (HER1) in breast cancer (BCa) systems. The shift in phosphorylation profiles of receptor tyrosine kinases (RTKs) and other signal transduction proteins upon differential ligand stimulation further demonstrated extreme assay specificity in a multiplexed array format. HER2 analysis by CEER in 227 BCa tissues showed superior accuracy when compared to the outcome from immunohistochemistry (IHC) (83% vs. 96%). A significant incidence of HER2 status alteration with recurrent disease was observed via circulating tumor cell (CTC) analysis, suggesting an evolving and dynamic disease progression. HER2-positive CTCs were found in 41% (7/17) while CTCs with significant HER2-activation without apparent over-expression were found in 18% (3/17) of relapsed BCa patients with HER2-negative primary tumors. The apparent 'HER2 status conversion' observed in recurrent BCa may have significant implications on understanding breast cancer metastasis and associated therapeutic development.
Conclusion
CEER can be multiplexed to analyze pathway proteins in a comprehensive manner with extreme specificity and sensitivity. This format is ideal for analyzing clinical samples with limited availability.
Journal Article
Prognostic Risk Assessment and Prediction of Radiotherapy Benefit for Women with Ductal Carcinoma In Situ (DCIS) of the Breast, in a Randomized Clinical Trial (SweDCIS)
2021
Prediction of radiotherapy (RT) benefit after breast-conserving surgery (BCS) for DCIS is crucial. The aim was to validate a biosignature, DCISionRT®, in the SweDCIS randomized trial. Women were randomly assigned to RT or not after BCS, between 1987 and 2000. Tumor blocks were collected, and slides were sent to PreludeDxTM for testing. In 504 women with complete data and negative margins, DCISionRT divided 52% women into Elevated (DS > 3) and 48% in Low (DS ≤ 3) Risk groups. In the Elevated Risk group, RT significantly decreased relative 10-year ipsilateral total recurrence (TotBE) and 10-year ipsilateral invasive recurrence (InvBE) rates, HR 0.32 and HR 0.24, with absolute decreases of 15.5% and 9.3%. In the Low Risk group, there were no significant risk differences observed with radiotherapy. Using a cutoff of DS > 3.0, the test was not predictive for RT benefit (p = 0.093); however, above DS > 2.8 RT benefit was greater for InvBE (interaction p = 0.038). Recurrences at 10 years without radiotherapy increased significantly per 5 DS units (TotBE HR:1.5 and InvBE HR:1.5). Continuous DS was prognostic for TotBE risk although categorical DS did not reach significance. Absolute 10-year TotBE and InvBE risks appear sufficiently different to indicate that DCISionRT can aid physicians in selecting individualized adjuvant DCIS treatment strategies. Further analyses are planned in combined cohorts to increase statistical power.
Journal Article
Biopharmaceutical Approaches for Developing and Assessing Oral Peptide Delivery Strategies and Systems: In Vitro Permeability and In Vivo Oral Absorption of Salmon Calcitonin
by
Makhey, Vijaya
,
Yu, Hongshi
,
Perry, Barbara
in
Administration, Oral
,
Animals
,
Biological and medical sciences
1999
To evaluate a biopharmaceutical approach for selecting formulation additives and establishing the performance specifications of an oral peptide delivery system using sCT as a model peptide.
The effect of formulation additives on sCT effective permeability and transepithelial electrical resistance (TEER) was evaluated in side-by-side diffusion chambers using rat intestinal segments. Baseline regional oral absorption of sCT was evaluated in an Intestinal and Vascular Access Port (IVAP) dog model by administration directly into the duodenum, ileum, and colon by means of surgically implanted, chronic catheters. The effect of varying the input rate and volume of the administered solution on the extent of sCT absorption was also evaluated. Citric acid (CA) was utilized in all studies to cause a transient reduction in local pH. In vitro samples and plasma samples were analyzed by radioimmunoassay (RIA). Two oral delivery systems were prepared based on the results of the in vitro and IVAP studies, and evaluated in normal dogs.
Maximal permeability enhancement of sCT was observed using taurodeoxycholate (TDC) or lauroyl carnitine (LC) in vitro. Ileal absorption of sCT was higher than in other regions of the intestine. Low volume and bolus input of solution formulations was selected as the optimal condition for the IVAP studies since larger volumes or slower input rates resulted in significantly lower sCT bioavailability (BA). Much lower BA of sCT was observed when CA was not used in the formulation. The absolute oral bioavailability (mean+/-SD) in dogs for the control (sCT + CA) and two proprietary sCT delivery systems was 0.30%+/-0.05%, 1.10+/-0.18%, and 1.31+/-0.56%, respectively.
These studies demonstrate the utility of in vitro evaluation and controlled in vivo studies for developing oral peptide delivery strategies. Formulation additives were selected, the optimal intestinal region for delivery identified, and the optimal release kinetics of additives and actives from the delivery system were characterized. These methods were successfully used for devising delivery strategies and fabricating and evaluating oral sCT delivery systems in animals. Based on these studies, sCT delivery systems have been fabricated and tested in humans with favorable results.
Journal Article