Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
33 result(s) for "Leghtas, Z."
Sort by:
Confining the state of light to a quantum manifold by engineered two-photon loss
Physical systems usually exhibit quantum behavior, such as superpositions and entanglement, only when they are sufficiently decoupled from a lossy environment. Paradoxically, a specially engineered interaction with the environment can become a resource for the generation and protection of quantum states. This notion can be generalized to the confinement of a system into a manifold of quantum states, consisting of all coherent superpositions of multiple stable steady states. We have confined the state of a superconducting resonator to the quantum manifold spanned by two coherent states of opposite phases and have observed a Schrödinger cat state spontaneously squeeze out of vacuum before decaying into a classical mixture. This experiment points toward robustly encoding quantum information in multidimensional steady-state manifolds.
Autonomously stabilized entanglement between two superconducting quantum bits
An entangled Bell state of two superconducting quantum bits can be stabilized for an arbitrary time using an autonomous feedback scheme, that is, one that does not require a complicated external error-correcting feedback loop. Harnessing dissipation in entangled quantum states Entangled states are a key resource in fundamental quantum physics, quantum cryptography and quantum computation. It has been generally assumed that the creation of such states requires the avoidance of contact with a dissipative environment, and minimization of decoherence. Some studies have shown, however, that dissipative interactions can be used to preserve coherence, and in this issue of Nature two groups demonstrate this principle for continuously driven physical systems. Lin et al . use engineered dissipation to deterministically produce and stabilize entanglement between two trapped-ion qubits, independent of their initial state. Shankar et al . use an autonomous feedback scheme to counteract decoherence and demonstrate the stabilization of an entangled Bell state of a quantum register of two superconducting qubits for an arbitrary time. This approach may be applied to a broad range of experimental systems to achieve desired quantum dynamics or steady states. Quantum error correction codes are designed to protect an arbitrary state of a multi-qubit register from decoherence-induced errors 1 , but their implementation is an outstanding challenge in the development of large-scale quantum computers. The first step is to stabilize a non-equilibrium state of a simple quantum system, such as a quantum bit (qubit) or a cavity mode, in the presence of decoherence. This has recently been accomplished using measurement-based feedback schemes 2 , 3 , 4 , 5 . The next step is to prepare and stabilize a state of a composite system 6 , 7 , 8 . Here we demonstrate the stabilization of an entangled Bell state of a quantum register of two superconducting qubits for an arbitrary time. Our result is achieved using an autonomous feedback scheme that combines continuous drives along with a specifically engineered coupling between the two-qubit register and a dissipative reservoir. Similar autonomous feedback techniques have been used for qubit reset 9 , single-qubit state stabilization 10 , and the creation 11 and stabilization 6 of states of multipartite quantum systems. Unlike conventional, measurement-based schemes, the autonomous approach uses engineered dissipation to counteract decoherence 12 , 13 , 14 , 15 , obviating the need for a complicated external feedback loop to correct errors. Instead, the feedback loop is built into the Hamiltonian such that the steady state of the system in the presence of drives and dissipation is a Bell state, an essential building block for quantum information processing. Such autonomous schemes, which are broadly applicable to a variety of physical systems, as demonstrated by the accompanying paper on trapped ion qubits 16 , will be an essential tool for the implementation of quantum error correction.
Dynamics of a qubit while simultaneously monitoring its relaxation and dephasing
Decoherence originates from the leakage of quantum information into external degrees of freedom. For a qubit, the two main decoherence channels are relaxation and dephasing. Here, we report an experiment on a superconducting qubit where we retrieve part of the lost information in both of these channels. We demonstrate that raw averaging the corresponding measurement records provides a full quantum tomography of the qubit state where all three components of the effective spin-1/2 are simultaneously measured. From single realizations of the experiment, it is possible to infer the quantum trajectories followed by the qubit state conditioned on relaxation and/or dephasing channels. The incompatibility between these quantum measurements of the qubit leads to observable consequences in the statistics of quantum states. The high level of controllability of superconducting circuits enables us to explore many regimes from the Zeno effect to underdamped Rabi oscillations depending on the relative strengths of driving, dephasing, and relaxation. Information leaked by a quantum system into its environment causes decoherence but if it is recorded then it can be used to infer the quantum state. Ficheux et al. monitor the relaxation and dephasing of a qubit and show that this allows all three components of the qubit to be probed simultaneously.
Coherent Oscillations inside a Quantum Manifold Stabilized by Dissipation
Manipulating the state of a logical quantum bit (qubit) usually comes at the expense of exposing it to decoherence. Fault-tolerant quantum computing tackles this problem by manipulating quantum information within a stable manifold of a larger Hilbert space, whose symmetries restrict the number of independent errors. The remaining errors do not affect the quantum computation and are correctable after the fact. Here we implement the autonomous stabilization of an encoding manifold spanned by Schrödinger cat states in a superconducting cavity. We show Zeno-driven coherent oscillations between these states analogous to the Rabi rotation of a qubit protected against phase flips. Such gates are compatible with quantum error correction and hence are crucial for fault-tolerant logical qubits.
Robust Concurrent Remote Entanglement Between Two Superconducting Qubits
Entangling two remote quantum systems that never interact directly is an essential primitive in quantum information science and forms the basis for the modular architecture of quantum computing. When protocols to generate these remote entangled pairs rely on using traveling single-photon states as carriers of quantum information, they can be made robust to photon losses, unlike schemes that rely on continuous variable states. However, efficiently detecting single photons is challenging in the domain of superconducting quantum circuits because of the low energy of microwave quanta. Here, we report the realization of a robust form of concurrent remote entanglement based on a novel microwave photon detector implemented in the superconducting circuit quantum electrodynamics platform of quantum information. Remote entangled pairs with a fidelity of 0.57±0.01 are generated at 200 Hz. Our experiment opens the way for the implementation of the modular architecture of quantum computation with superconducting qubits.
Quantum control of a cat qubit with bit-flip times exceeding ten seconds
Quantum bits (qubits) are prone to several types of error as the result of uncontrolled interactions with their environment. Common strategies to correct these errors are based on architectures of qubits involving daunting hardware overheads 1 . One possible solution is to build qubits that are inherently protected against certain types of error, so the overhead required to correct the remaining errors is greatly reduced 2 – 7 . However, this strategy relies on one condition: any quantum manipulations of the qubit must not break the protection that has been so carefully engineered 5 , 8 . A type of qubit known as a cat qubit is encoded in the manifold of metastable states of a quantum dynamical system, and thereby acquires continuous and autonomous protection against bit-flips. Here, in a superconducting-circuit experiment, we implemented a cat qubit with bit-flip times exceeding 10 s. This is an improvement of four orders of magnitude over previously published cat-qubit implementations. We prepared and imaged quantum superposition states, and measured phase-flip times greater than 490 ns. Most importantly, we controlled the phase of these quantum superpositions without breaking the bit-flip protection. This experiment demonstrates the compatibility of quantum control and inherent bit-flip protection at an unprecedented level, showing the viability of these dynamical qubits for future quantum technologies. A type of qubit that has inherent resistance to bit-flip errors has been manipulated with a bit-flip time of more than 10 s without losing that error protection.
Mixing of counterpropagating signals in a traveling-wave Josephson device
Light waves do not interact in vacuum but can mix in nonlinear media. A strong pump wave can thus convert the frequency of a weaker signal, provided energy and momentum are conserved. These conditions are typically satisfied when all waves propagate with comparable phase velocity along a given axis. Here, we investigate an alternative scheme by which a microwave signal propagating along a one-dimensional Josephson metamaterial is converted into a counter-propagating wave through interaction with a slower pump. In this regime, the input wave is exponentially attenuated, enabling an on-chip microwave isolator reconfigurable into a reciprocal, tunable coupler. The device’s operating mode and working frequency can be selected in situ over a broad microwave range. We measure isolation exceeding 5 dB in the 5-8.5 GHz range and 10 dB in the 7-8.5 GHz range, with a typical 200 MHz bandwidth. Further improvements are expected through design optimization and reduced fabrication disorder, opening new possibilities for microwave routing and processing in superconducting circuits. Wave-mixing is investigated in a Josephson traveling-wave device supporting two modes of propagation. A phase-matched conversion process between counterpropagting waves is leveraged to implement a robust on-chip circulator and tunable coupler.
Magnifying Quantum Phase Fluctuations with Cooper-Pair Pairing
Remarkably, complex assemblies of superconducting wires, electrodes, and Josephson junctions are compactly described by a handful of collective phase degrees of freedom that behave like quantum particles in a potential. Almost all these circuits operate in the regime where quantum phase fluctuations are small—the associated flux is smaller than the superconducting flux quantum—although entering the regime of large fluctuations would have profound implications for metrology and qubit protection. The difficulty arises from the apparent need for circuit impedances vastly exceeding the resistance quantum. Independently, exotic circuit elements that require Cooper pairs to form pairs in order to tunnel have been developed to encode and topologically protect quantum information. In this work, we demonstrate that pairing Cooper pairs magnifies the phase fluctuations of the circuit ground state. We measure a tenfold suppression of flux sensitivity of the first transition energy only, implying a twofold increase in the vacuum phase fluctuations and showing that the ground state is delocalized over several Josephson wells.
Tracking photon jumps with repeated quantum non-demolition parity measurements
The quantized changes in the photon number parity of a microwave cavity can be tracked on a short enough timescale, and with sufficiently little interference with the quantum state, for this parity observable to be used to monitor the occurrence of error in a recently proposed protected quantum memory. Rapid error correction For quantum computers to work in practice, they need to incorporate error correction protocols. This involves monitoring quantum states without disturbing them, usually via entanglement with additional qubits. Luyan Sun et al . show that they can track individual quantum jumps in superconducting qubits in microwave cavities. The measurements are projected as parity information (whether there are odd or even number of microwave photons in the system) in an 'ancilla' or accessory qubit, a procedure that causes minimal interference with the qubit state. This parity information can be used for efficient error correction. The approach addresses the outstanding problem of fast and repeated monitoring of an error syndrome and paves the way to fault-tolerant quantum computing with superconducting circuits. Quantum error correction is required for a practical quantum computer because of the fragile nature of quantum information. In quantum error correction, information is redundantly stored in a large quantum state space and one or more observables must be monitored to reveal the occurrence of an error, without disturbing the information encoded in an unknown quantum state. Such observables, typically multi-quantum-bit parities, must correspond to a special symmetry property inherent in the encoding scheme. Measurements of these observables, or error syndromes, must also be performed in a quantum non-demolition way (projecting without further perturbing the state) and more quickly than errors occur. Previously, quantum non-demolition measurements of quantum jumps between states of well-defined energy have been performed in systems such as trapped ions 1 , 2 , 3 , electrons 4 , cavity quantum electrodynamics 5 , 6 , nitrogen–vacancy centres 7 , 8 , 9 and superconducting quantum bits 10 , 11 . So far, however, no fast and repeated monitoring of an error syndrome has been achieved. Here we track the quantum jumps of a possible error syndrome, namely the photon number parity of a microwave cavity, by mapping this property onto an ancilla quantum bit, whose only role is to facilitate quantum state manipulation and measurement. This quantity is just the error syndrome required in a recently proposed scheme for a hardware-efficient protected quantum memory using Schrödinger cat states (quantum superpositions of different coherent states of light) in a harmonic oscillator 12 . We demonstrate the projective nature of this measurement onto a region of state space with well-defined parity by observing the collapse of a coherent state onto even or odd cat states. The measurement is fast compared with the cavity lifetime, has a high single-shot fidelity and has a 99.8 per cent probability per single measurement of leaving the parity unchanged. In combination with the deterministic encoding of quantum information in cat states realized earlier 13 , 14 , the quantum non-demolition parity tracking that we demonstrate represents an important step towards implementing an active system that extends the lifetime of a quantum bit.
Vacuum-field-induced THz transport gap in a carbon nanotube quantum dot
The control of light-matter interaction at the most elementary level has become an important resource for quantum technologies. Implementing such interfaces in the THz range remains an outstanding problem. Here, we couple a single electron trapped in a carbon nanotube quantum dot to a THz resonator. The resulting light-matter interaction reaches the deep strong coupling regime that induces a THz energy gap in the carbon nanotube solely by the vacuum fluctuations of the THz resonator. This is directly confirmed by transport measurements. Such a phenomenon which is the exact counterpart of inhibition of spontaneous emission in atomic physics opens the path to the readout of non-classical states of light using electrical current. This would be a particularly useful resource and perspective for THz quantum optics. Strong light-matter coupling has been realized at the level of single atoms and photons throughout most of the electromagnetic spectrum, except for the THz range. Here, the authors report a THz-scale transport gap, induced by vacuum fluctuations in carbon nanotube quantum dot through the deep strong coupling of a single electron to a THz resonator.