Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
188
result(s) for
"Lehericy, S"
Sort by:
MRI of brachial plexus using diffusion tensor imaging: a pilot study for the use of resolve sequence surgical and radiologic anatomy
2023
BackgroundClinical exam is the goldstandard for surgical indication. ENMG and conventional MRI are insufficient to understand the highly variable clinical presentation of brachial plexus (BP) lesions. DTI is based on motion of water molecules and can explore nerve function.PurposeThis pilot study of healthy subjects aimed to develop RESOLVE sequence for BP exploration using diffusion MRI. The main objective was to provide complete precise information from DTI cartography associated with anatomical data.MethodsSix healthy volunteers were scanned using 3T PRISMA scanner with anatomic 3D STIR SPACE and RESOLVE diffusion sequences. Diffusion parametric maps of fractional anisotropy (FA) were extracted from RESOLVE acquisitions. A reproducible method for roots volumes and angles measurements was created using 3DSlicer. ROI were segmented on Mean B0 sequences. FA measurements were obtained with ROI on Mean B0 sequences.ResultsRESOLVE sequence was adapted to the BP. Mean FA was 0.30. Angles measurements on 3D STIR SPACE sequences showed increasing values from proximal to distal roots with an 0.6 ICC. Volume measurements on anatomic sequences varied widely from one root to another but did not show any significant difference on laterality.ConclusionsA new and reproducible method for BP exploration was developed, using MRI RESOLVE DTI sequences. Complete mapping was obtained but a low resolution of track density imaging did not allow to exploit distal nerves. Deterministic tractography principal limit was the lack of resolution. Extraction of diffusion, volumetric and angular parameters of the plexus roots, and scripts creation for image processing was adapted to the healthy BP.
Journal Article
The Neural System That Bridges Reward and Cognition in Humans: An fMRI Study
2002
We test the hypothesis that motivational and cognitive processes are linked by a specific neural system to reach maximal efficiency. We studied six normal subjects performing a working memory paradigm (n-back tasks) associated with different levels of monetary reward during an fMRI session. The study showed specific brain activation in relation with changes in both the cognitive loading and the reward associated with task performance. First, the working memory tasks activated a network including the dorsolateral prefrontal cortex [Brodmann area (BA) 9/46] and, in addition, in the lateral frontopolar areas (BA 10), but only in the more demanding condition (3-back task). This result suggests that lateral prefrontal areas are organized in a caudo-rostral continuum in relation with the increase in executive requirement. Second, reward induces an increased activation in the areas already activated by working memory processing and in a supplementary region, the medial frontal pole (BA 10), regardless of the level of cognitive processing. It is postulated that the latter region plays a specific role in monitoring the reward value of ongoing cognitive processes. Third, we detected areas where the signal decreases (ventral-BA 11/47 and subgenual prefrontal cortices) in relation with both the increase of cognitive demand and the reward. The deactivation may represent an emotional gating aimed at inhibiting adverse emotional signals to maximize the level of performance. Taken together, these results suggest a balance between increasing activity in cortical cognitive areas and decreasing activity in the limbic and paralimbic structures during ongoing higher cognitive processing.
Journal Article
Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI
2011
Characterizing demyelination/degeneration of spinal pathways in traumatic spinal cord injured (SCI) patients is crucial for assessing the prognosis of functional rehabilitation. Novel techniques based on diffusion-weighted (DW) magnetic resonance imaging (MRI) and magnetization transfer (MT) imaging provide sensitive and specific markers of white matter pathology. In this paper we combined for the first time high angular resolution diffusion-weighted imaging (HARDI), MT imaging and atrophy measurements to evaluate the cervical spinal cord of fourteen SCI patients and age-matched controls. We used high in-plane resolution to delineate dorsal and ventrolateral pathways. Significant differences were detected between patients and controls in the normal-appearing white matter for fractional anisotropy (FA, p<0.0001), axial diffusivity (p<0.05), radial diffusivity (p<0.05), generalized fractional anisotropy (GFA, p<0.0001), magnetization transfer ratio (MTR, p<0.0001) and cord area (p<0.05). No significant difference was detected in mean diffusivity (p=0.41), T1-weighted (p=0.76) and T2-weighted (p=0.09) signals. MRI metrics were remarkably well correlated with clinical disability (Pearson's correlations, FA: p<0.01, GFA: p<0.01, radial diffusivity: p=0.01, MTR: p=0.04 and atrophy: p<0.01). Stepwise linear regressions showed that measures of MTR in the dorsal spinal cord predicted the sensory disability whereas measures of MTR in the ventro-lateral spinal cord predicted the motor disability (ASIA score). However, diffusion metrics were not specific to the sensorimotor scores. Due to the specificity of axial and radial diffusivity and MT measurements, results suggest the detection of demyelination and degeneration in SCI patients. Combining HARDI with MT imaging is a promising approach to gain specificity in characterizing spinal cord pathways in traumatic injury.
► We combined DTI, magnetization transfer and atrophy measure in spinal cord injury. ► Differences in normal-appearing white matter for DTI and MTR. ► Results suggest degeneration and demyelination in SCI patients. ► DTI, MTR and atrophy can predict impairment in spinal cord injury (SCI).
Journal Article
The brain signature of paracetamol in healthy volunteers: a double-blind randomized trial
2015
Paracetamol's (APAP) mechanism of action suggests the implication of supraspinal structures but no neuroimaging study has been performed in humans.
This randomized, double-blind, crossover, placebo-controlled trial in 17 healthy volunteers (NCT01562704) aimed to evaluate how APAP modulates pain-evoked functional magnetic resonance imaging signals. We used behavioral measures and functional magnetic resonance imaging to investigate the response to experimental thermal stimuli with APAP or placebo administration. Region-of-interest analysis revealed that activity in response to noxious stimulation diminished with APAP compared to placebo in prefrontal cortices, insula, thalami, anterior cingulate cortex, and periaqueductal gray matter.
These findings suggest an inhibitory effect of APAP on spinothalamic tracts leading to a decreased activation of higher structures, and a top-down influence on descending inhibition. Further binding and connectivity studies are needed to evaluate how APAP modulates pain, especially in the context of repeated administration to patients with pain.
Journal Article
White matter predicts functional connectivity in premanifest Huntington's disease
by
Decolongon, J
,
Weber, N
,
Clark, Chris A.
in
Alzheimer's disease
,
Brain research
,
Huntingtons disease
2017
Objectives The distribution of pathology in neurodegenerative disease can be predicted by the organizational characteristics of white matter in healthy brains. However, we have very little evidence for the impact these pathological changes have on brain function. Understanding any such link between structure and function is critical for understanding how underlying brain pathology influences the progressive behavioral changes associated with neurodegeneration. Here, we demonstrate such a link between structure and function in individuals with premanifest Huntington's. Methods Using diffusion tractography and resting state functional magnetic resonance imaging to characterize white matter organization and functional connectivity, we investigate whether characteristic patterns of white matter organization in the healthy human brain shape the changes in functional coupling between brain regions in premanifest Huntington's disease. Results We find changes in functional connectivity in premanifest Huntington's disease that link directly to underlying patterns of white matter organization in healthy brains. Specifically, brain areas with strong structural connectivity show decreases in functional connectivity in premanifest Huntington's disease relative to controls, while regions with weak structural connectivity show increases in functional connectivity. Furthermore, we identify a pattern of dissociation in the strongest functional connections between anterior and posterior brain regions such that anterior functional connectivity increases in strength in premanifest Huntington's disease, while posterior functional connectivity decreases. Interpretation Our findings demonstrate that organizational principles of white matter underlie changes in functional connectivity in premanifest Huntington's disease. Furthermore, we demonstrate functional antero–posterior dissociation that is in keeping with the caudo–rostral gradient of striatal pathology in HD.
Journal Article
Detection of Motor Changes in Huntington's Disease Using Dynamic Causal Modeling
by
Scheller, Elisa
,
Klöppel, Stefan
,
Kaller, Christoph P.
in
Atrophy
,
Brain research
,
Cluster analysis
2015
Deficits in motor functioning are one of the hallmarks of Huntington's disease (HD), a genetically caused neurodegenerative disorder. We applied functional magnetic resonance imaging (fMRI) and dynamic causal modeling (DCM) to assess changes that occur with disease progression in the neural circuitry of key areas associated with executive and cognitive aspects of motor control. Seventy-seven healthy controls, 62 pre-symptomatic HD gene carriers (preHD), and 16 patients with manifest HD symptoms (earlyHD) performed a motor finger-tapping fMRI task with systematically varying speed and complexity. DCM was used to assess the causal interactions among seven pre-defined regions of interest, comprising primary motor cortex, supplementary motor area (SMA), dorsal premotor cortex, and superior parietal cortex. To capture heterogeneity among HD gene carriers, DCM parameters were entered into a hierarchical cluster analysis using Ward's method and squared Euclidian distance as a measure of similarity. After applying Bonferroni correction for the number of tests, DCM analysis revealed a group difference that was not present in the conventional fMRI analysis. We found an inhibitory effect of complexity on the connection from parietal to premotor areas in preHD, which became excitatory in earlyHD and correlated with putamen atrophy. While speed of finger movements did not modulate the connection from caudal to pre-SMA in controls and preHD, this connection became strongly negative in earlyHD. This second effect did not survive correction for multiple comparisons. Hierarchical clustering separated the gene mutation carriers into three clusters that also differed significantly between these two connections and thereby confirmed their relevance. DCM proved useful in identifying group differences that would have remained undetected by standard analyses and may aid in the investigation of between-subject heterogeneity.
Journal Article
Trial of Deferiprone in Parkinson’s Disease
2022
Iron deposition in the substantia nigra has been implicated in Parkinson’s disease. Chelation with deferiprone reduced brain iron content but led to worse scores on scales of the movement disorder at 36 weeks.
Journal Article
Basal ganglia and supplementary motor area subtend duration perception: an fMRI study
by
Pouthas, V
,
Hugueville, L
,
Lehéricy, S
in
Adult
,
Attention - physiology
,
Basal Ganglia - physiology
2003
Brain imaging studies on duration perception usually report the activation of a network that includes the frontal and mesiofrontal cortex (supplementary motor area, SMA), parietal cortex, and subcortical areas (basal ganglia, thalamus, and cerebellum). To address the question of the specific involvement of these structures in temporal processing, we contrasted two visual discrimination tasks in which the relevant stimulus dimension was either its intensity or its duration. Eleven adults had to indicate (by pressing one of two keys) whether they thought the duration or the intensity of a light (LED) was equal to (right hand) or different from (left hand) that of a previously presented standard. In a control task, subjects had to press one of the two keys at random. A similar broad network was observed in both the duration-minus-control and intensity-minus-control comparisons. The intensity-minus-duration comparison pointed out activation in areas known to participate in cognitive operations on visual stimuli: right occipital gyrus, fusiform gyri, hippocampus, precuneus, and intraparietal sulcus. In contrast, the duration-minus-intensity comparison indicated activation of a complex network that included the basal ganglia, SMA, ventrolateral prefrontal cortex, inferior parietal cortex, and temporal cortex. These structures form several subnetworks, each possibly in charge of specific time-coding operations in humans. The SMA and basal ganglia may be implicated in the time-keeping mechanism, and the frontal-parietal areas may be involved in the attentional and mnemonic operations required for encoding and retrieving duration information.
Journal Article
Exploring anterograde memory: a volumetric MRI study in patients with mild cognitive impairment
2016
Background
The aim of this volumetric study was to explore the neuroanatomical correlates of the Free and Cued Selective Reminding Test (FCSRT) and the Delayed Matching-to-Sample—48 items (DMS-48), two tests widely used in France to assess verbal and visual anterograde memory. We wanted to determine to what extent the two tests rely on the medial temporal lobe, and could therefore be predictive of Alzheimer’s disease, in which pathological changes typically start in this region.
Methods
We analysed data from a cohort of 138 patients with mild cognitive impairment participating in a longitudinal multicentre clinical research study. Verbal memory was assessed using the FCSRT and visual recognition memory was evaluated using the DMS-48. Performances on these two tests were correlated to local grey matter atrophy via structural MRI using voxel-based morphometry.
Results
Our results confirm the existence of a positive correlation between the volume of the medial temporal lobe and the performance on the FCSRT, prominently on the left, and the performance on the DMS-48, on the right, for the whole group of patients (family-wise error,
P
< 0.05). Interestingly, this region remained implicated only in the subgroup of patients who had deficient scores on the cued recall of the FCSRT, whereas the free recall was associated with prefrontal aspects. For the DMS-48, it was only implicated for the group of patients whose performances declined between the immediate and delayed trial. Conversely, temporo-parietal cortices were implicated when no decline was observed. Within the medial temporal lobe, the parahippocampal gyrus was prominently involved for the FCSRT and the immediate trial of the DMS-48, whereas the hippocampus was solely involved for the delayed trial of the DMS-48.
Conclusions
The two tests are able to detect an amnestic profile of the medial temporal type, under the condition that the scores remain deficient after the cued recall of the FCSRT or decline on the delayed recognition trial of the DMS-48. Strategic retrieval as well as perceptual/attentional processes, supported by prefrontal and temporo-parietal cortices, were also found to have an impact on the performances. Finally, the implication of the hippocampus appears time dependent, triggered by a longer delay than the parahippocampus, rather than determined by the sense of recollection or the encoding strength associated with the memory trace.
Journal Article
Atlas-based analysis of human brainstem anatomy as revealed by gradient-echo T2-weighted MR imaging at 7T
by
Mangin, J-F.
,
Kezele, I.
,
Marrakchi, L.
in
Acquisitions & mergers
,
Brain stem
,
Magnetic resonance imaging
2009
Among the fiber bundles, medial lemniscus, superior cerebellar peduncle, brachium conjonctivum, and cerebral peduncle were delineated. [...]several nuclei and fiber bundles could be identified directly in the MR image, while other structures require the resort to anatomical atlases.
Journal Article