Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
51,795 result(s) for "Lei Liu"
Sort by:
Atomistic simulation of quantum transport in nanoelectronic devices
\"Computational nanoelectronics is an emerging multi-disciplinary field covering condensed matter physics, applied mathematics, computer science, and electronic engineering. In recent decades, a few state-of-the-art software packages have been developed to carry out first-principle atomistic device simulations. Nevertheless those packages are either black boxes (commercial codes) or accessible only to very limited users (private research codes). The purpose of this book is to open one of the commercial black boxes, and to demonstrate the complete procedure from theoretical derivation, to numerical implementation, all the way to device simulation. Meanwhile the affiliated source code constitutes an open platform for new researchers. This is the first book of its kind. We hope the book will make a modest contribution to the field of computational nanoelectronics\"-- Provided by publisher.
حوكمة الصين في العلوم والتكنولوجيا والتعليم
دخلت الصين مرحلة جديدة من التطور خلال العقود الثلاثة، مع بدئها بتنفيذ سياسة الإصلاح والانفتاح، فاحتل اقتصادها في العام 2010 م، المرتبة الثانية لأكبر اقتصاد في العالم، نتيجة سنوات طويلة من العمل الشاق، لبناء دولة اشتراكية قوية، والترويج لحوكمة جديدة، إلى جانب التطور المتسارع لكل من العلوم والتكنولوجيا والتعليم، تحت قيادة الرئيس شي جين بينغ الحكيمة التي عكست وجهة نظره الثاقبة والمتمثلة في دمج النظرية بالممارسة لمواكبة الزمن. وبناء عليه، سيعالج هذا الكتاب أهم الخطوط العريضة التي قام عليها فكر شي جين بينغ في حوكمة الصين، وبناء دولة ابتكارية تعطي الأولوية لتطوير العلوم والتكنولوجيا والتعليم، وإغنائها بالمواهب الشابة، بهدف الحفاظ على استمرارية النهضة التي تشهدها الأمة الصينية حاليا، والشير أكثر فأكثر إلى الأمام.
DAMP-sensing receptors in sterile inflammation and inflammatory diseases
The innate immune system has the capacity to detect ‘non-self’ molecules derived from pathogens, known as pathogen-associated molecular patterns, via pattern recognition receptors. In addition, an increasing number of endogenous host-derived molecules, termed damage-associated molecular patterns (DAMPs), have been found to be sensed by various innate immune receptors. The recognition of DAMPs, which are produced or released by damaged and dying cells, promotes sterile inflammation, which is important for tissue repair and regeneration, but can also lead to the development of numerous inflammatory diseases, such as metabolic disorders, neurodegenerative diseases, autoimmune diseases and cancer. Here we examine recent discoveries concerning the roles of DAMP-sensing receptors in sterile inflammation and in diseases resulting from dysregulated sterile inflammation, and then discuss insights into the cross-regulation of these receptors and their ligands.Host-derived molecules, the so-called damage-associated molecular patterns (DAMPs), can induce sterile inflammation. This Review provides an overview of DAMP-sensing receptors, discusses the crosstalk between these receptors and explores their role in disease.
Transition metal-catalyzed decarboxylative cross-coupling reactions
Transition metal-catalyzed decarboxylative cross-coupling reactions have recently emerged as a new and important category of organic transformations that find versatile applications in the construction of carbon-carbon and carbon-heteroatom bonds. The use of relatively cheap and stable carboxylic acids to replace organometallic reagents enables the decarboxylative cross-coupling reactions to proceed with good selectivities and functional group tolerance. In the present review we summarize the various types of decarboxylative cross-coupling reactions catalyzed by different transition metal complexes. The scope and applications of these reactions are described. The challenges and opportunities in the field are discussed.
Particle swarm optimization algorithm: an overview
Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm motivated by intelligent collective behavior of some animals such as flocks of birds or schools of fish. Since presented in 1995, it has experienced a multitude of enhancements. As researchers have learned about the technique, they derived new versions aiming to different demands, developed new applications in a host of areas, published theoretical studies of the effects of the various parameters and proposed many variants of the algorithm. This paper introduces its origin and background and carries out the theory analysis of the PSO. Then, we analyze its present situation of research and application in algorithm structure, parameter selection, topology structure, discrete PSO algorithm and parallel PSO algorithm, multi-objective optimization PSO and its engineering applications. Finally, the existing problems are analyzed and future research directions are presented.
Targeting cancer-associated fibroblast-secreted WNT2 restores dendritic cell-mediated antitumour immunity
ObjectiveSolid tumours respond poorly to immune checkpoint inhibitor (ICI) therapies. One major therapeutic obstacle is the immunosuppressive tumour microenvironment (TME). Cancer-associated fibroblasts (CAFs) are a key component of the TME and negatively regulate antitumour T-cell response. Here, we aimed to uncover the mechanism underlying CAFs-mediated tumour immune evasion and to develop novel therapeutic strategies targeting CAFs for enhancing ICI efficacy in oesophageal squamous cell carcinoma (OSCC) and colorectal cancer (CRC).DesignAnti-WNT2 monoclonal antibody (mAb) was used to treat immunocompetent C57BL/6 mice bearing subcutaneously grafted mEC25 or CMT93 alone or combined with anti-programmed cell death protein 1 (PD-1), and the antitumour efficiency and immune response were assessed. CAFs-induced suppression of dendritic cell (DC)-differentiation and DC-mediated antitumour immunity were analysed by interfering with CAFs-derived WNT2, either by anti-WNT2 mAb or with short hairpin RNA-mediated knockdown. The molecular mechanism underlying CAFs-induced DC suppression was further explored by RNA-sequencing and western blot analyses.ResultsA negative correlation between WNT2+ CAFs and active CD8+ T cells was detected in primary OSCC tumours. Anti-WNT2 mAb significantly restored antitumour T-cell responses within tumours and enhanced the efficacy of anti-PD-1 by increasing active DC in both mouse OSCC and CRC syngeneic tumour models. Directly interfering with CAFs-derived WNT2 restored DC differentiation and DC-mediated antitumour T-cell responses. Mechanistic analyses further demonstrated that CAFs-secreted WNT2 suppresses the DC-mediated antitumour T-cell response via the SOCS3/p-JAK2/p-STAT3 signalling cascades.ConclusionsCAFs could suppress antitumour immunity through WNT2 secretion. Targeting WNT2 might enhance the ICI efficacy and represent a new anticancer immunotherapy.
Impact of Soil Heavy Metal Pollution on Food Safety in China
Food safety is a major concern for the Chinese public. This study collected 465 published papers on heavy metal pollution rates (the ratio of the samples exceeding the Grade II limits for Chinese soils, the Soil Environmental Quality Standard-1995) in farmland soil throughout China. The results showed that Cd had the highest pollution rate of 7.75%, followed by Hg, Cu, Ni and Zn, Pb and Cr had the lowest pollution rates at lower than 1%. The total pollution rate in Chinese farmland soil was 10.18%, mainly from Cd, Hg, Cu, and Ni. The human activities of mining and smelting, industry, irrigation by sewage, urban development, and fertilizer application released certain amounts of heavy metals into soil, which resulted in the farmland soil being polluted. Considering the spatial variations of grain production, about 13.86% of grain production was affected due to the heavy metal pollution in farmland soil. These results many provide valuable information for agricultural soil management and protection in China.
Crosstalk between mitochondrial biogenesis and mitophagy to maintain mitochondrial homeostasis
Mitochondrial mass and quality are tightly regulated by two essential and opposing mechanisms, mitochondrial biogenesis (mitobiogenesis) and mitophagy, in response to cellular energy needs and other cellular and environmental cues. Great strides have been made to uncover key regulators of these complex processes. Emerging evidence has shown that there exists a tight coordination between mitophagy and mitobiogenesis, and their defects may cause many human diseases. In this review, we will first summarize the recent advances made in the discovery of molecular regulations of mitobiogenesis and mitophagy and then focus on the mechanism and signaling pathways involved in the simultaneous regulation of mitobiogenesis and mitophagy in the response of tissue or cultured cells to energy needs, stress, or pathophysiological conditions. Further studies of the crosstalk of these two opposing processes at the molecular level will provide a better understanding of how the cell maintains optimal cellular fitness and function under physiological and pathophysiological conditions, which holds promise for fighting aging and aging-related diseases.
Community Transmission of Severe Acute Respiratory Syndrome Coronavirus 2, Shenzhen, China, 2020
Since early January 2020, after the outbreak of coronavirus infection in Wuhan, China, ≈365 confirmed cases have been reported in Shenzhen, China. The mode of community and intrafamily transmission is threatening residents in Shenzhen. Strategies to strengthen prevention and interruption of these transmissions should be urgently addressed.