Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
29 result(s) for "Leignel, Vincent"
Sort by:
The Mediterranean limpet Patella caerulea (Gastropoda, Mollusca) to assess marine ecotoxicological risk: a case study of Tunisian coasts contaminated by metals
Participants in the coastal socio-economy of the Mediterranean Sea, such as industries, aquaculture, urban populations, conglomerates, and tourists, create intense anthropogenic pressures on marine ecosystems (such as the release of trace metals). This raises concerns about their impact on the surrounding environment and on marine organisms, including those collected for human consumption. This study introduces the possibility of using Patella caerulea (Linnaeus 1758), indigenous to the Mediterranean Sea, as a biosentinel of marine pollution. This study proposes coupling environmental (bioaccumulation) and toxicological (redox homeostasis) measures of bioavailability with genetic variability (COI mtDNA) assessments. Concentrations of six trace metals (cadmium, copper, iron, lead, nickel, and zinc) were measured in surface seawater and in P. caerulea individuals collected from four coastal stations on the Tunisian coast where different levels of metal contamination have occurred. The quantified biomarkers involved the determination of antioxidant defense enzymes, catalase (CAT), glutathione peroxidase (GPX), superoxide dismutase (SOD), and the measurement of lipid peroxidation indicated by malondialdehyde (MDA) levels. Our study identified critical levels of metal contamination among locations in the Gulf of Gabes. Concomitantly, the induction of antioxidant biomarkers (especially SOD and GPX) was observed, highlighting the potential of P. caerulea to acclimate to stressful pollution conditions. Molecular analysis of COI (mtDNA) revealed low discrimination between the four P. caerulea populations, highlighting the role of marine currents in the Mediterranean Sea in the dispersal and passive transportation of limpet larvae, allowing an exchange of individuals among physically separated, P. caerulea populations.
The Impacts of the Multispecies Approach to Caffeine on Marine Invertebrates
Caffeine is one of the most consumed substances by humans through foodstuffs (coffee, tea, drugs, etc.). Its human consumption releases a high quantity of caffeine into the hydrological network. Thus, caffeine is now considered an emergent pollutant sometimes found at high concentrations in oceans and seas. Surprisingly, little research has been conducted on the molecular responses induced by caffeine in marine organisms. We studied, in laboratory conditions, six phylogenetically distant species that perform distinct ecological functions (Actinia equina and Aulactinia verrucosa (cnidarians, predator), Littorina littorea (gastropod, grazer), Magallana gigas (bivalve, filter-feeder), and Carcinus maenas and Pachygrapsus marmoratus (crabs, predator and scavenger)) subjected to caffeine exposure. The antioxidant responses (catalase, CAT; glutathione peroxidase, GPx; superoxide dismutase, SOD), lipid peroxidation (MDA), and the acetylcholinesterase (AChE) activity were estimated when the organisms were exposed to environmental caffeine concentrations (5 μg/L (low), 10 μg/L (high)) over 14 days. Differential levels of responses and caffeine effects were noted in the marine invertebrates, probably in relation to their capacity to metabolization the pollutant. Surprisingly, the filter feeder (M. gigas, oyster) did not show enzymatic responses or lipid peroxidation for the two caffeine concentrations tested. The marine gastropod (grazer) appeared to be more impacted by caffeine, with an increase in activities for all antioxidative enzymes (CAT, GPx, SOD). In parallel, the two cnidarians and two crabs were less affected by the caffeine contaminations. However, caffeine was revealed as a neurotoxic agent to all species studied, inducing high inhibition of AChE activity. This study provides new insights into the sublethal impacts of caffeine at environmentally relevant concentrations in marine invertebrates.
Marine Pollution and Advances in Biomonitoring in Cartagena Bay in the Colombian Caribbean
Coastal zones sustain extensive biodiversity, support key processes for ocean dynamics, and influence the balance of the global environment. They also provide resources and services to communities, determine their culture, and are the basis for their economic growth. Cartagena Bay in the Colombian Caribbean is the place of the establishment of one of the country’s main cities, which has a great historical and tourist attraction, and it is also the location of the main commercial port and a great variety of industries. Historically, it has been affected by several environmental impacts and intense pollution. This situation has gained the attention of different researchers, so herein is presented a literature review with a systematic approach using RStudio’s bibliometrix on the presence of pollutants and the impact on biodiversity in recent decades, providing a critical analysis of the state of Cartagena Bay and its future needs to ensure its recovery and conservation. In addition, the socioeconomic dynamics related to the environmental state of Cartagena Bay are presented from the framework drivers, pressures, status, impacts, and responses (DPSIR). The update and critical understanding of the sources, fate, and effects of pollution are important not only for the knowledge of the status of this singular ecosystem but also to encourage future research and entrench evidence to support decision makers’ actions. This review highlights that several pollutants that have been detected exceeding sediment quality guidelines, like As, Cd, Hg, and PAH, are also reported to bioaccumulate and cause damage throughout the trophic levels of the coastal environment. In addition, the potential use of sentinel species and biomarkers for their monitoring is discussed. Finally, the factors that cause pollution and threaten the state of the bay continue to exert pressure and impact; thus, there is a call for the further monitoring of this ecosystem and the strengthening of policies and regulations.
Benthic Diatom Blooms of Blue Haslea spp. in the Mediterranean Sea
Blue Haslea species are marine benthic pennate diatoms able to synthesize a blue-green water-soluble pigment, like marennine produced by H. ostrearia Simonsen. New species of Haslea synthetizing blue pigments were recently described (H. karadagensis, H. nusantara, H. provincialis and H. silbo). Their marennine-like pigments have allelopathic, antioxidative, antiviral and antibacterial properties, which have been demonstrated in laboratory conditions. Marennine is also responsible for the greening of oysters, for example, in the Marennes Oléron area (France), a phenomenon that has economical and patrimonial values. While blue Haslea spp. blooms have been episodically observed in natural environments (e.g., France, Croatia, USA), their dynamics have only been investigated in oyster ponds. This work is the first description of blue Haslea spp. benthic blooms that develop in open environments on the periphyton, covering turf and some macroalgae-like Padina. Different sites were monitored in the Mediterranean Sea (Corsica, France and Croatia) and two different blue Haslea species involved in these blooms were identified: H. ostrearia and H. provincialis. A non-blue Haslea species was also occasionally encountered. The benthic blooms of blue Haslea followed the phytoplankton spring bloom and occurred in shallow calm waters, possibly indicating a prominent role of light to initiate the blooms. In the absence of very strong winds and water currents that can possibly disaggregate the blue biofilm, the end of blooms coincided with the warming of the upper water masses, which might be profitable for other microorganisms and ultimately lead to a shift in the biofilm community.
Assessment of Knowledge on Metal Trace Element Concentrations and Metallothionein Biomarkers in Cetaceans
Cetaceans are recognized as bioindicators of pollution in oceans. These marine mammals are final trophic chain consumers and easily accumulate pollutants. For example, metals are abundant in oceans and commonly found in the cetacean tissues. Metallothioneins (MTs) are small non-enzyme proteins involved in metal cell regulation and are essential in many cellular processes (cell proliferation, redox balance, etc.). Thus, the MT levels and the concentrations of metals in cetacean tissue are positively correlated. Four types of metallothioneins (MT1, 2, 3, and 4) are found in mammals, which may have a distinct expression in tissues. Surprisingly, only a few genes or mRNA-encoding metallothioneins are characterized in cetaceans; molecular studies are focused on MT quantification, using biochemical methods. Thus, we characterized, in transcriptomic and genomic data, more than 200 complete sequences of metallothioneins (mt1, 2, 3, and 4) in cetacean species to study their structural variability and to propose to the scientific research community Mt genes dataset to develop in future molecular approaches which will study the four types of metallothioneins in diversified organs (brain, gonad, intestine, kidney, stomach, etc.).
Solar Salterns and Pollution: Valorization of Some Endemic Species as Sentinels in Ecotoxicology
Solar salterns and salt marshes are unique ecosystems with special physicochemical features and characteristic biota. Currently, there are very few studies focused on the impacts of pollution on these economic and ecological systems. Unfortunately, diversified pollution (metals, Polycyclic Aromatic Hydrocarbons, etc.) has been detected in these complex ecosystems. These hypersaline environments are under increasing threat due to anthropogenic pressures. Despite this, they represent a valuable source of microbial diversity, with taxa displaying special features in terms of environmental remediation capacities as well as economical species such as Artemia spp. (Branchiopoda) and Dunaliella salina (Chlorophyta). In this review, we discuss the impacts of pollution on these semi-artificial systems. Therefore, we have indicated the sentinel species identified in plankton communities, which can be used in ecotoxicological investigations in solar salterns. In future, researchers should increase their interest in pollution assessment in solar salterns and salt marshes.
What Was Old Is New Again: The Pennate Diatom Haslea ostrearia (Gaillon) Simonsen in the Multi-Omic Age
The marine pennate diatom Haslea ostrearia has long been known for its characteristic blue pigment marennine, which is responsible for the greening of invertebrate gills, a natural phenomenon of great importance for the oyster industry. For two centuries, this taxon was considered unique; however, the recent description of a new blue Haslea species revealed unsuspected biodiversity. Marennine-like pigments are natural blue dyes that display various biological activities—e.g., antibacterial, antioxidant and antiproliferative—with a great potential for applications in the food, feed, cosmetic and health industries. Regarding fundamental prospects, researchers use model organisms as standards to study cellular and physiological processes in other organisms, and there is a growing and crucial need for more, new and unconventional model organisms to better correspond to the diversity of the tree of life. The present work, thus, advocates for establishing H. ostrearia as a new model organism by presenting its pros and cons—i.e., the interesting aspects of this peculiar diatom (representative of benthic-epiphytic phytoplankton, with original behavior and chemodiversity, controlled sexual reproduction, fundamental and applied-oriented importance, reference genome, and transcriptome will soon be available); it will also present the difficulties encountered before this becomes a reality as it is for other diatom models (the genetics of the species in its infancy, the transformation feasibility to be explored, the routine methods needed to cryopreserve strains of interest).
Portunus pelagicus (Linnaeus, 1758) as a Sentinel Species to Assess Trace Metal Occurrence: A Case Study of Kuwait Waters (Northwestern Arabian Gulf)
Heavy metal pollution can adversely impact marine life, such as crabs, which can accumulate it in different organs and potentially transfer and biomagnify along the food chain in aquatic ecosystems. This study aimed to examine the concentrations of heavy metals (Cd, Cu, Pb, and Zn) in sediment, water, and crab tissues (gills, hepatopancreas, and carapace) of the blue swimmer crab Portunus pelagicus in the coastal areas of Kuwait, northwestern Arabian Gulf. Samples were collected from Shuwaikh Port, Shuaiba Port, and Al-Khiran areas. The accumulation of metals in crabs were higher in the carapace > gill > digestive gland, and the highest metal concentration was found in crabs collected from Shuwaikh > Shuaiba > Al-Khiran. The metal concentrations in the sediments were in the order Zn > Cu > Pb > Cd. Zn was the highest metal concentration detected in marine water sampled from the Al-Khiran Area, whereas the lowest metal was Cd sampled in water from the Shuwaikh Area. The results of this study validate the marine crab P. pelagicus as a relevant sentinel and prospective bioindicator for evaluating heavy metal pollution in marine ecosystems.
Haslea nusantara (Bacillariophyceae), a new blue diatom from the Java Sea, Indonesia: morphology, biometry and molecular characterization
Background and aims - The present study aims to describe a new species of pennate blue diatom from the genus Haslea, H. nusantara sp. nov., collected from Semak Daun Island, the Seribu Archipelago, in Indonesian marine waters. Methods - Assessment for species identification was conducted using light microscopy, Scanning Electron Microscopy and molecular techniques. The morphological characteristics of H. nusantara have been described, illustrated and compared to other morphologically similar blue Haslea taxa, distributed worldwide. Additionally, molecular characterization was achieved by sequencing plastidial and mitochondrial genomes. Key results - This new species, named Haslea nusantara, cannot be discriminated by its morphology (stria density) but it is characterized by its gene sequences (rbcL chloroplast gene and cox1 mitochondrial gene). Moreover, it differentiates from other blue Haslea species by the presence of a thin central bar, which has been previously reported in non-blue species like H. pseudostrearia. The complete mitochondrion (36,288 basepairs, bp) and plastid (120,448 bp) genomes of H. nusantara were sequenced and the gene arrangements were compared with other diatom genomes. Phylogeny analyses established using rbcL indicated that H. nusantara is included in the blue Haslea cluster and close to a blue Haslea sp. found in Canary Islands (H. silbo sp. ined.). Conclusions - All investigations carried out in this study show that H. nusantara is a new blue-pigmented species, which belongs to the blue Haslea clade, with an exceptional geographic distribution in the Southern Hemisphere.
Molecular Systematics of the Deep-Sea Hydrothermal Vent Endemic Brachyuran Family Bythograeidae: A Comparison of Three Bayesian Species Tree Methods
Brachyuran crabs of the family Bythograeidae are endemic to deep-sea hydrothermal vents and represent one of the most successful groups of macroinvertebrates that have colonized this extreme environment. Occurring worldwide, the family includes six genera (Allograea, Austinograea, Bythograea, Cyanagraea, Gandalfus, and Segonzacia) and fourteen formally described species. To investigate their evolutionary relationships, we conducted Maximum Likelihood and Bayesian molecular phylogenetic analyses, based on DNA sequences from fragments of three mitochondrial genes (16S rDNA, Cytochrome oxidase I, and Cytochrome b) and three nuclear genes (28S rDNA, the sodium-potassium ATPase a-subunit 'NaK', and Histone H3A). We employed traditional concatenated (i.e., supermatrix) phylogenetic methods, as well as three recently developed Bayesian multilocus methods aimed at inferring species trees from potentially discordant gene trees. We found strong support for two main clades within Bythograeidae: one comprising the members of the genus Bythograea; and the other comprising the remaining genera. Relationships within each of these two clades were partially resolved. We compare our results with an earlier hypothesis on the phylogenetic relationships among bythograeid genera based on morphology. We also discuss the biogeography of the family in the light of our results. Our species tree analyses reveal differences in how each of the three methods weighs conflicting phylogenetic signal from different gene partitions and how limits on the number of outgroup taxa may affect the results.