Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
24 result(s) for "Lemmens, Nicole"
Sort by:
Real time monitoring of Staphylococcus aureus biofilm sensitivity towards antibiotics with isothermal microcalorimetry
Biofilm-associated infections with Staphylococcus aureus are difficult to treat even after administration of antibiotics that according to the standard susceptibility assays are effective. Currently, the assays used in the clinical laboratories to determine the sensitivity of S . aureus towards antibiotics are not representing the behaviour of biofilm-associated S . aureus , since these assays are performed on planktonic bacteria. In research settings, microcalorimetry has been used for antibiotic susceptibility studies. Therefore, in this study we investigated if we can use isothermal microcalorimetry to monitor the response of biofilm towards antibiotic treatment in real-time. We developed a reproducible method to generate biofilm in an isothermal microcalorimeter setup. Using this system, the sensitivity of 5 methicillin-sensitive S . aureus (MSSA) and 5 methicillin-resistant S . aureus (MRSA) strains from different genetic lineages were determined towards: flucloxacillin, cefuroxime, cefotaxime, gentamicin, rifampicin, vancomycin, levofloxacin, clindamycin, erythromycin, linezolid, fusidic acid, co-trimoxazole, and doxycycline. In contrast to conventional assays, our calorimetry-based biofilm susceptibility assay showed that S . aureus biofilms, regardless MSSA or MRSA, can survive the exposure to the maximum serum concentration of all tested antibiotics. The only treatment with a single antibiotic showing a significant reduction in biofilm survival was rifampicin, yet in 20% of the strains, emerging antibiotic resistance was observed. Furthermore, the combination of rifampicin with flucloxacillin, vancomycin or levofloxacin was able to prevent S . aureus biofilm from becoming resistant to rifampicin. Isothermal microcalorimetry allows real-time monitoring of the sensitivity of S . aureus biofilms towards antibiotics in a fast and reliable way.
Looking to nature for a new concept in antimicrobial treatments: isoflavonoids from Cytisus striatus as antibiotic adjuvants against MRSA
The spread of multidrug-resistant Staphylococcu s aureus strains, including methicillin-resistant S . aureus (MRSA), has shortened the useful life of anti-staphylococcal drugs enormously. Two approaches can be followed to address this problem: screening various sources for new leads for antibiotics or finding ways to disable the resistance mechanisms to existing antibiotics. Plants are resistant to most microorganisms, but despite extensive efforts to identify metabolites that are responsible for this resistance, no substantial progress has been made. Plants possibly use multiple strategies to deal with microorganisms that evolved over time. For this reason, we searched for plants that could potentiate the effects of known antibiotics. From 29 plant species tested, Cytisus striatus clearly showed such an activity and an NMR-based metabolomics study allowed the identification of compounds from the plant extracts that could act as antibiotic adjuvants. Isoflavonoids were found to potentiate the effect of ciprofloxacin and erythromycin against MRSA strains. For the structure-activity relationship (SAR), 22 isoflavonoids were assessed as antibiotic adjuvants. This study reveals a clear synergy between isoflavonoids and the tested antibiotics, showing their great potential for applications in the clinical therapy of infections with antibiotic-resistant microorganisms such as MRSA.
Paracetamol modulates biofilm formation in Staphylococcus aureus clonal complex 8 strains
Staphylococcus aureus biofilms are a major problem in modern healthcare due to their resistance to immune system defenses and antibiotic treatments. Certain analgesic agents are able to modulate S. aureus biofilm formation, but currently no evidence exists if paracetamol, often combined with antibiotic treatment, also has this effect. Therefore, we aimed to investigate if paracetamol can modulate S. aureus biofilm formation. Considering that certain regulatory pathways for biofilm formation and virulence factor production by S. aureus are linked, we further investigated the effect of paracetamol on immune modulator production. The in vitro biofilm mass of 21 S. aureus strains from 9 genetic backgrounds was measured in the presence of paracetamol. Based on biofilm mass quantity, we further investigated paracetamol-induced biofilm alterations using a bacterial viability assay combined with N-Acetylglucosamine staining. Isothermal microcalorimetry was used to monitor the effect of paracetamol on bacterial metabolism within biofilms and green fluorescent protein (GFP) promoter fusion technology for transcription of staphylococcal complement inhibitor (SCIN). Clinically relevant concentrations of paracetamol enhanced biofilm formation particularly among strains belonging to clonal complex 8 (CC8), but had minimal effect on S. aureus planktonic growth. The increase of biofilm mass can be attributed to the marked increase of N-Acetylglucosamine containing components of the extracellular matrix, presumably polysaccharide intercellular adhesion. Biofilms of RN6390A (CC8) showed a significant increase in the immune modulator SCIN transcription during co-incubation with low concentrations of paracetamol. Our data indicate that paracetamol can enhance biofilm formation. The clinical relevance needs to be further investigated.
The survival of epidemic and sporadic MRSA on human skin mimics is determined by both host and bacterial factors
Bacterial survival on, and interactions with, human skin may explain the epidemiological success of MRSA strains. We evaluated the bacterial counts for 27 epidemic and 31 sporadic MRSA strains on 3D epidermal models based on N/TERT cells (NEMs) after 1, 2 and 8 days. In addition, the expression of antimicrobial peptides (hBD-2, RNase 7), inflammatory cytokines (IL-1β, IL-6) and chemokine IL-8 by NEMs was assessed using immunoassays and the expression of 43 S. aureus virulence factors was determined by a multiplex competitive Luminex assay. To explore donor variation, bacterial counts for five epidemic and seven sporadic MRSA strains were determined on 3D primary keratinocyte models (LEMs) from three human donors. Bacterial survival was comparable on NEMs between the two groups, but on LEMs, sporadic strains showed significantly lower survival numbers compared to epidemic strains. Both groups triggered the expression of immune factors. Upon interaction with NEMs, only the epidemic MRSA strains expressed pore-forming toxins, including alpha-hemolysin (Hla), gamma-hemolysin (HlgB), Panton-Valentine leucocidin (LukS) and LukED. Together, these data indicate that the outcome of the interaction between MRSA and human skin mimics, depends on the unique combination of bacterial strain and host factors.
Characterization of the Humoral Immune Response during Staphylococcus aureus Bacteremia and Global Gene Expression by Staphylococcus aureus in Human Blood
Attempts to develop an efficient anti-staphylococcal vaccine in humans have so far been unsuccessful. Therefore, more knowledge of the antigens that are expressed by Staphylococcus aureus in human blood and induce an immune response in patients is required. In this study we further characterize the serial levels of IgG and IgA antibodies against 56 staphylococcal antigens in multiple serum samples of 21 patients with a S. aureus bacteremia, compare peak IgG levels between patients and 30 non-infected controls, and analyze the expression of 3626 genes by two genetically distinct isolates in human blood. The serum antibody levels were measured using a bead-based flow cytometry technique (xMAP®, Luminex corporation). Gene expression levels were analyzed using a microarray (BµG@s microarray). The initial levels and time taken to reach peak IgG and IgA antibody levels were heterogeneous in bacteremia patients. The antigen SA0688 was associated with the highest median initial-to-peak antibody fold-increase for IgG (5.05-fold) and the second highest increase for IgA (2.07-fold). Peak IgG levels against 27 antigens, including the antigen SA0688, were significantly elevated in bacteremia patients versus controls (P≤0.05). Expression of diverse genes, including SA0688, was ubiquitously high in both isolates at all time points during incubation in blood. However, only a limited number of genes were specifically up- or downregulated in both isolates when cultured in blood, compared to the start of incubation in blood or during incubation in BHI broth. In conclusion, most staphylococcal antigens tested in this study, including many known virulence factors, do not induce uniform increases in the antibody levels in bacteremia patients. In addition, the expression of these antigens by S. aureus is not significantly altered by incubation in human blood over time. One immunogenic and ubiquitously expressed antigen is the putative iron-regulated ABC transporter SA0688.
Human Immunoglobulin G Cannot Inhibit Fibrinogen Binding by the Genetically Diverse A Domain of Staphylococcus aureus Fibronectin-Binding Protein A
Despite the many in vitro and murine in vivo studies involving FnBPA, the actual presence of this virulence factor during human infection is less well established. Furthermore, it is currently unknown to what extent sequence variation in such a virulence factor affects the human antibody response and the ability of antibodies to interfere with FnBPA function. This study sheds new light on these issues. First, the uniform presence of a patient’s IgG against FnBPA indicates the presence and importance of this virulence factor during S. aureus pathogenesis. Second, the absence of an increase in antibody production in most patients following bacteremia indicates the complexity of S. aureus -host interactions, possibly involving immune evasion or lack of expression of FnBPA during invasive infection. Finally, we provide new insights into the inability of human antibodies to interfere with FnBPA-fibrinogen binding. These observations should be taken into account during the development of novel vaccination approaches. The fibronectin-binding protein A (FnBPA) is a cell surface-associated protein of Staphylococcus aureus which mediates adherence to the host extracellular matrix and is important for bacterial virulence. Previously, substantial sequence diversity was found among strains in the fibrinogen-binding A domain of this protein, and 7 different isotypes were described. The effect of this sequence diversity on the human antibody response, in terms of both antibody production and antibody function, remains unclear. In this study, we identify five different FnBPA A domain isotypes based on the sequence results of 22 clinical S. aureus isolates, obtained from the same number of patients suffering from bacteremia. Using a bead-based Luminex technique, we measure the patients’ total immunoglobulin G (IgG) against the 7 FnBPA isotypes at the onset and during the time course of bacteremia (median of 10 serum samples per patient over a median of 35 days). A significant increase in IgG against the FnBPA A domain, including the isotype carried by the infecting strain, is observed in only three out of 22 patients (14%) after the onset of bacteremia. Using a Luminex-based FnBPA–fibrinogen-binding assay, we find that preincubation of recombinant FnBPA isotypes with IgG from diverse patients does not interfere with binding to fibrinogen. This observation is confirmed using an alternative Luminex-based assay and enzyme-linked immunosorbent assay (ELISA). IMPORTANCE Despite the many in vitro and murine in vivo studies involving FnBPA, the actual presence of this virulence factor during human infection is less well established. Furthermore, it is currently unknown to what extent sequence variation in such a virulence factor affects the human antibody response and the ability of antibodies to interfere with FnBPA function. This study sheds new light on these issues. First, the uniform presence of a patient’s IgG against FnBPA indicates the presence and importance of this virulence factor during S. aureus pathogenesis. Second, the absence of an increase in antibody production in most patients following bacteremia indicates the complexity of S. aureus -host interactions, possibly involving immune evasion or lack of expression of FnBPA during invasive infection. Finally, we provide new insights into the inability of human antibodies to interfere with FnBPA-fibrinogen binding. These observations should be taken into account during the development of novel vaccination approaches.
Real time monitoring of Staphylococcus aureus biofilm sensitivity towards antibiotics with isothermal microcalorimetry
Biofilm-associated infections with Staphylococcus aureus are difficult to treat even after administration of antibiotics that according to the standard susceptibility assays are effective. Currently, the assays used in the clinical laboratories to determine the sensitivity of S. aureus towards antibiotics are not representing the behaviour of biofilm-associated S. aureus, since these assays are performed on planktonic bacteria. In research settings, microcalorimetry has been used for antibiotic susceptibility studies. Therefore, in this study we investigated if we can use isothermal microcalorimetry to monitor the response of biofilm towards antibiotic treatment in real-time. We developed a reproducible method to generate biofilm in an isothermal microcalorimeter setup. Using this system, the sensitivity of 5 methicillin-sensitive S. aureus (MSSA) and 5 methicillin-resistant S. aureus (MRSA) strains from different genetic lineages were determined towards: flucloxacillin, cefuroxime, cefotaxime, gentamicin, rifampicin, vancomycin, levofloxacin, clindamycin, erythromycin, linezolid, fusidic acid, co-trimoxazole, and doxycycline. In contrast to conventional assays, our calorimetry-based biofilm susceptibility assay showed that S. aureus biofilms, regardless MSSA or MRSA, can survive the exposure to the maximum serum concentration of all tested antibiotics. The only treatment with a single antibiotic showing a significant reduction in biofilm survival was rifampicin, yet in 20% of the strains, emerging antibiotic resistance was observed. Furthermore, the combination of rifampicin with flucloxacillin, vancomycin or levofloxacin was able to prevent S. aureus biofilm from becoming resistant to rifampicin. Isothermal microcalorimetry allows real-time monitoring of the sensitivity of S. aureus biofilms towards antibiotics in a fast and reliable way.
Detection of residual pluripotent stem cells in cell therapy products utilizing droplet digital PCR: an international multisite evaluation study
Abstract The presence of residual undifferentiated pluripotent stem cells (PSCs) in PSC-derived cell therapy products (CTPs) is a major safety issue for their clinical application, due to the potential risk of PSC-derived tumor formation. An international multidisciplinary multisite study to evaluate a droplet digital PCR (ddPCR) approach to detect residual undifferentiated PSCs in PSC-derived CTPs was conducted as part of the Health and Environmental Sciences Institute Cell Therapy-TRAcking, Circulation & Safety Technical Committee. To evaluate the use of ddPCR in quantifying residual iPSCs in a cell sample, different quantities of induced pluripotent stem cells (iPSCs) were spiked into a background of iPSC-derived cardiomyocytes (CMs) to mimic different concentrations of residual iPSCs. A one step reverse transcription ddPCR (RT-ddPCR) was performed to measure mRNA levels of several iPSC-specific markers and to evaluate the assay performance (precision, sensitivity, and specificity) between and within laboratories. The RT-ddPCR assay variability was initially assessed by measuring the same RNA samples across all participating facilities. Subsequently, each facility independently conducted the entire process, incorporating the spiking step, to discern the parameters influencing potential variability. Our results show that a RT-ddPCR assay targeting ESRG, LINC00678, and LIN28A genes offers a highly sensitive and robust detection of impurities of iPSC-derived CMs and that the main contribution to variability between laboratories is the iPSC-spiking procedure, and not the RT-ddPCR. The RT-ddPCR assay would be generally applicable for tumorigenicity evaluation of PSC-derived CTPs with appropriate marker genes suitable for each CTP. Graphical Abstract Graphical Abstract
GC–MS based targeted metabolic profiling identifies changes in the wheat metabolome following deoxynivalenol treatment
Fusarium graminearum and related species commonly infest grains causing the devastating plant disease Fusarium head blight (FHB) and the formation of trichothecene mycotoxins. The most relevant toxin is deoxynivalenol (DON), which acts as a virulence factor of the pathogen. FHB is difficult to control and resistance to this disease is a polygenic trait, mainly mediated by the quantitative trait loci (QTL) Fhb1 and Qfhs.ifa - 5A . In this study we established a targeted GC–MS based metabolomics workflow comprising a standardized experimental setup for growth, treatment and sampling of wheat ears and subsequent GC–MS analysis followed by data processing and evaluation of QC measures using tailored statistical and bioinformatics tools. This workflow was applied to wheat samples of six genotypes with varying levels of Fusarium resistance, treated with either DON or water, and harvested 0, 12, 24, 48 and 96 h after treatment. The results suggest that the primary carbohydrate metabolism and transport, the citric acid cycle and the primary nitrogen metabolism of wheat are clearly affected by DON treatment. Most importantly significantly elevated levels of amino acids and derived amines were observed. In particular, the concentrations of the three aromatic amino acids phenylalanine, tyrosine, and tryptophan increased. No clear QTL specific difference in the response could be observed except a generally faster increase in shikimate pathway intermediates in genotypes containing Fhb1 . The overall workflow proved to be feasible and facilitated to obtain a more comprehensive picture on the effect of DON on the central metabolism of wheat.
A zebrafish model for C9orf72 ALS reveals RNA toxicity as a pathogenic mechanism
The exact mechanism underlying amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) associated with the GGGGCC repeat expansion in C9orf72 is still unclear. Two gain-of-function mechanisms are possible: repeat RNA toxicity and dipeptide repeat protein (DPR) toxicity. We here dissected both possibilities using a zebrafish model for ALS. Expression of two DPRs, glycine–arginine and proline–arginine, induced a motor axonopathy. Similarly, expanded sense and antisense repeat RNA also induced a motor axonopathy and formed mainly cytoplasmic RNA foci. However, DPRs were not detected in these conditions. Moreover, stop codon-interrupted repeat RNA still induced a motor axonopathy and a synergistic role of low levels of DPRs was excluded. Altogether, these results show that repeat RNA toxicity is independent of DPR formation. This RNA toxicity, but not the DPR toxicity, was attenuated by the RNA-binding protein Pur-alpha and the autophagy-related protein p62. Our findings demonstrate that RNA toxicity, independent of DPR toxicity, can contribute to the pathogenesis of C9orf72-associated ALS/FTD.