Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6
result(s) for
"Lemmens-den Toom, Nicole A."
Sort by:
Paracetamol modulates biofilm formation in Staphylococcus aureus clonal complex 8 strains
by
Lemmens-den Toom, Nicole A.
,
van Wamel, Willem J. B.
,
Verbon, Annelies
in
631/326
,
631/326/46
,
692/308/2778
2021
Staphylococcus aureus
biofilms are a major problem in modern healthcare due to their resistance to immune system defenses and antibiotic treatments. Certain analgesic agents are able to modulate
S. aureus
biofilm formation, but currently no evidence exists if paracetamol, often combined with antibiotic treatment, also has this effect. Therefore, we aimed to investigate if paracetamol can modulate
S. aureus
biofilm formation. Considering that certain regulatory pathways for biofilm formation and virulence factor production by
S. aureus
are linked, we further investigated the effect of paracetamol on immune modulator production. The in vitro biofilm mass of 21
S. aureus
strains from 9 genetic backgrounds was measured in the presence of paracetamol. Based on biofilm mass quantity, we further investigated paracetamol-induced biofilm alterations using a bacterial viability assay combined with N-Acetylglucosamine staining. Isothermal microcalorimetry was used to monitor the effect of paracetamol on bacterial metabolism within biofilms and green fluorescent protein (GFP) promoter fusion technology for transcription of staphylococcal complement inhibitor (SCIN). Clinically relevant concentrations of paracetamol enhanced biofilm formation particularly among strains belonging to clonal complex 8 (CC8), but had minimal effect on
S. aureus
planktonic growth. The increase of biofilm mass can be attributed to the marked increase of N-Acetylglucosamine containing components of the extracellular matrix, presumably polysaccharide intercellular adhesion. Biofilms of RN6390A (CC8) showed a significant increase in the immune modulator SCIN transcription during co-incubation with low concentrations of paracetamol. Our data indicate that paracetamol can enhance biofilm formation. The clinical relevance needs to be further investigated.
Journal Article
The survival of epidemic and sporadic MRSA on human skin mimics is determined by both host and bacterial factors
by
Lemmens-den Toom, Nicole A.
,
van Wamel, Willem J. B.
,
Vos, Margreet C.
in
Acids
,
Antiinfectives and antibacterials
,
Antimicrobial peptides
2022
Bacterial survival on, and interactions with, human skin may explain the epidemiological success of MRSA strains. We evaluated the bacterial counts for 27 epidemic and 31 sporadic MRSA strains on 3D epidermal models based on N/TERT cells (NEMs) after 1, 2 and 8 days. In addition, the expression of antimicrobial peptides (hBD-2, RNase 7), inflammatory cytokines (IL-1β, IL-6) and chemokine IL-8 by NEMs was assessed using immunoassays and the expression of 43 S. aureus virulence factors was determined by a multiplex competitive Luminex assay. To explore donor variation, bacterial counts for five epidemic and seven sporadic MRSA strains were determined on 3D primary keratinocyte models (LEMs) from three human donors. Bacterial survival was comparable on NEMs between the two groups, but on LEMs, sporadic strains showed significantly lower survival numbers compared to epidemic strains. Both groups triggered the expression of immune factors. Upon interaction with NEMs, only the epidemic MRSA strains expressed pore-forming toxins, including alpha-hemolysin (Hla), gamma-hemolysin (HlgB), Panton-Valentine leucocidin (LukS) and LukED. Together, these data indicate that the outcome of the interaction between MRSA and human skin mimics, depends on the unique combination of bacterial strain and host factors.
Journal Article
Real time monitoring of Staphylococcus aureus biofilm sensitivity towards antibiotics with isothermal microcalorimetry
by
Lemmens-den Toom, Nicole A.
,
Croughs, Peter D.
,
van Wamel, Willem J. B.
in
Anti-Bacterial Agents - pharmacology
,
Antibiotic resistance
,
Antibiotics
2022
Biofilm-associated infections with
Staphylococcus aureus
are difficult to treat even after administration of antibiotics that according to the standard susceptibility assays are effective. Currently, the assays used in the clinical laboratories to determine the sensitivity of
S
.
aureus
towards antibiotics are not representing the behaviour of biofilm-associated
S
.
aureus
, since these assays are performed on planktonic bacteria. In research settings, microcalorimetry has been used for antibiotic susceptibility studies. Therefore, in this study we investigated if we can use isothermal microcalorimetry to monitor the response of biofilm towards antibiotic treatment in real-time. We developed a reproducible method to generate biofilm in an isothermal microcalorimeter setup. Using this system, the sensitivity of 5 methicillin-sensitive
S
.
aureus
(MSSA) and 5 methicillin-resistant
S
.
aureus
(MRSA) strains from different genetic lineages were determined towards: flucloxacillin, cefuroxime, cefotaxime, gentamicin, rifampicin, vancomycin, levofloxacin, clindamycin, erythromycin, linezolid, fusidic acid, co-trimoxazole, and doxycycline. In contrast to conventional assays, our calorimetry-based biofilm susceptibility assay showed that
S
.
aureus
biofilms, regardless MSSA or MRSA, can survive the exposure to the maximum serum concentration of all tested antibiotics. The only treatment with a single antibiotic showing a significant reduction in biofilm survival was rifampicin, yet in 20% of the strains, emerging antibiotic resistance was observed. Furthermore, the combination of rifampicin with flucloxacillin, vancomycin or levofloxacin was able to prevent
S
.
aureus
biofilm from becoming resistant to rifampicin. Isothermal microcalorimetry allows real-time monitoring of the sensitivity of
S
.
aureus
biofilms towards antibiotics in a fast and reliable way.
Journal Article
Real time monitoring of Staphylococcus aureus biofilm sensitivity towards antibiotics with isothermal microcalorimetry
Biofilm-associated infections with Staphylococcus aureus are difficult to treat even after administration of antibiotics that according to the standard susceptibility assays are effective. Currently, the assays used in the clinical laboratories to determine the sensitivity of S. aureus towards antibiotics are not representing the behaviour of biofilm-associated S. aureus, since these assays are performed on planktonic bacteria. In research settings, microcalorimetry has been used for antibiotic susceptibility studies. Therefore, in this study we investigated if we can use isothermal microcalorimetry to monitor the response of biofilm towards antibiotic treatment in real-time. We developed a reproducible method to generate biofilm in an isothermal microcalorimeter setup. Using this system, the sensitivity of 5 methicillin-sensitive S. aureus (MSSA) and 5 methicillin-resistant S. aureus (MRSA) strains from different genetic lineages were determined towards: flucloxacillin, cefuroxime, cefotaxime, gentamicin, rifampicin, vancomycin, levofloxacin, clindamycin, erythromycin, linezolid, fusidic acid, co-trimoxazole, and doxycycline. In contrast to conventional assays, our calorimetry-based biofilm susceptibility assay showed that S. aureus biofilms, regardless MSSA or MRSA, can survive the exposure to the maximum serum concentration of all tested antibiotics. The only treatment with a single antibiotic showing a significant reduction in biofilm survival was rifampicin, yet in 20% of the strains, emerging antibiotic resistance was observed. Furthermore, the combination of rifampicin with flucloxacillin, vancomycin or levofloxacin was able to prevent S. aureus biofilm from becoming resistant to rifampicin. Isothermal microcalorimetry allows real-time monitoring of the sensitivity of S. aureus biofilms towards antibiotics in a fast and reliable way.
Journal Article
Characterization of the Humoral Immune Response during Staphylococcus aureus Bacteremia and Global Gene Expression by Staphylococcus aureus in Human Blood
by
van Wamel, Willem J. B.
,
Verkaik, Nelianne J.
,
den Reijer, Paul Martijn
in
ABC transporter
,
Aged
,
Analysis
2013
Attempts to develop an efficient anti-staphylococcal vaccine in humans have so far been unsuccessful. Therefore, more knowledge of the antigens that are expressed by Staphylococcus aureus in human blood and induce an immune response in patients is required. In this study we further characterize the serial levels of IgG and IgA antibodies against 56 staphylococcal antigens in multiple serum samples of 21 patients with a S. aureus bacteremia, compare peak IgG levels between patients and 30 non-infected controls, and analyze the expression of 3626 genes by two genetically distinct isolates in human blood. The serum antibody levels were measured using a bead-based flow cytometry technique (xMAP®, Luminex corporation). Gene expression levels were analyzed using a microarray (BµG@s microarray). The initial levels and time taken to reach peak IgG and IgA antibody levels were heterogeneous in bacteremia patients. The antigen SA0688 was associated with the highest median initial-to-peak antibody fold-increase for IgG (5.05-fold) and the second highest increase for IgA (2.07-fold). Peak IgG levels against 27 antigens, including the antigen SA0688, were significantly elevated in bacteremia patients versus controls (P≤0.05). Expression of diverse genes, including SA0688, was ubiquitously high in both isolates at all time points during incubation in blood. However, only a limited number of genes were specifically up- or downregulated in both isolates when cultured in blood, compared to the start of incubation in blood or during incubation in BHI broth. In conclusion, most staphylococcal antigens tested in this study, including many known virulence factors, do not induce uniform increases in the antibody levels in bacteremia patients. In addition, the expression of these antigens by S. aureus is not significantly altered by incubation in human blood over time. One immunogenic and ubiquitously expressed antigen is the putative iron-regulated ABC transporter SA0688.
Journal Article
Human Immunoglobulin G Cannot Inhibit Fibrinogen Binding by the Genetically Diverse A Domain of Staphylococcus aureus Fibronectin-Binding Protein A
by
van Wamel, Willem J. B.
,
den Reijer, P. Martijn
,
Allouch, Dikra
in
Amino acids
,
antibody function
,
antibody repertoire
2018
Despite the many
in vitro
and murine
in vivo
studies involving FnBPA, the actual presence of this virulence factor during human infection is less well established. Furthermore, it is currently unknown to what extent sequence variation in such a virulence factor affects the human antibody response and the ability of antibodies to interfere with FnBPA function. This study sheds new light on these issues. First, the uniform presence of a patient’s IgG against FnBPA indicates the presence and importance of this virulence factor during
S. aureus
pathogenesis. Second, the absence of an increase in antibody production in most patients following bacteremia indicates the complexity of
S. aureus
-host interactions, possibly involving immune evasion or lack of expression of FnBPA during invasive infection. Finally, we provide new insights into the inability of human antibodies to interfere with FnBPA-fibrinogen binding. These observations should be taken into account during the development of novel vaccination approaches.
The fibronectin-binding protein A (FnBPA) is a cell surface-associated protein of
Staphylococcus aureus
which mediates adherence to the host extracellular matrix and is important for bacterial virulence. Previously, substantial sequence diversity was found among strains in the fibrinogen-binding A domain of this protein, and 7 different isotypes were described. The effect of this sequence diversity on the human antibody response, in terms of both antibody production and antibody function, remains unclear. In this study, we identify five different FnBPA A domain isotypes based on the sequence results of 22 clinical
S. aureus
isolates, obtained from the same number of patients suffering from bacteremia. Using a bead-based Luminex technique, we measure the patients’ total immunoglobulin G (IgG) against the 7 FnBPA isotypes at the onset and during the time course of bacteremia (median of 10 serum samples per patient over a median of 35 days). A significant increase in IgG against the FnBPA A domain, including the isotype carried by the infecting strain, is observed in only three out of 22 patients (14%) after the onset of bacteremia. Using a Luminex-based FnBPA–fibrinogen-binding assay, we find that preincubation of recombinant FnBPA isotypes with IgG from diverse patients does not interfere with binding to fibrinogen. This observation is confirmed using an alternative Luminex-based assay and enzyme-linked immunosorbent assay (ELISA).
IMPORTANCE
Despite the many
in vitro
and murine
in vivo
studies involving FnBPA, the actual presence of this virulence factor during human infection is less well established. Furthermore, it is currently unknown to what extent sequence variation in such a virulence factor affects the human antibody response and the ability of antibodies to interfere with FnBPA function. This study sheds new light on these issues. First, the uniform presence of a patient’s IgG against FnBPA indicates the presence and importance of this virulence factor during
S. aureus
pathogenesis. Second, the absence of an increase in antibody production in most patients following bacteremia indicates the complexity of
S. aureus
-host interactions, possibly involving immune evasion or lack of expression of FnBPA during invasive infection. Finally, we provide new insights into the inability of human antibodies to interfere with FnBPA-fibrinogen binding. These observations should be taken into account during the development of novel vaccination approaches.
Journal Article